Towards a Physiology of Language Models: *Elucidating and Utilizing Hidden Language Representation*

March 18, 2025, 5-5:45pm PT

Chi Han, Ph.D. Student @ UIUC, https://glaciohound.github.io/

How do their components function?

Why Do We Need A New Science?

New sciences often emerge as a result of scaling up old sciences

Machine Learning → Deep Learning → Language Models

PAC theory, optimization,

• • •

Gradient Descent, Neural Tangent Kernel, ...

AAAI 2025 Tutorial: The Quest for A Science of Language Models

A Sciences of LMs

https://glaciohound.github.io/Science-of-LLMs-Tutorial/

Chi Han et al, "The Quest for a Science of Language Models", Proceedings of the AAAI 2025, Tutorials Session https://glaciohound.github.io/Science-of-LLMs-Tutorial/

LM architecture design

Chi Han et al, "The Quest for a Science of Language Models", Proceedings of the AAAI 2025, Tutorials Session https://glaciohound.github.io/Science-of-LLMs-Tutorial/

LM architecture design

Chi Han et al, "The Quest for a Science of Language Models", Proceedings of the AAAI 2025, Tutorials Session https://glaciohound.github.io/Science-of-LLMs-Tutorial/

performance improvement Task

LM architecture design

Chi Han et al, "The Quest for a Science of Language Models", Proceedings of the AAAI 2025, Tutorials Session https://glaciohound.github.io/Science-of-LLMs-Tutorial/

performance improvement Task

LM architecture design

"Physiology"

"Physics"

Chi Han et al, "The Quest for a Science of Language Models", Proceedings of the AAAI 2025, Tutorials Session https://glaciohound.github.io/Science-of-LLMs-Tutorial/

performance Task improvement

LM architecture design

"Physiology"

"Physics"

Chi Han et al, "The Quest for a Science of Language Models", Proceedings of the AAAI 2025, Tutorials Session https://glaciohound.github.io/Science-of-LLMs-Tutorial/

syntax (language structure)

knowledge (LM & world)

L reasoning (LM capabilities)

Task

LM architecture design

"Physiology"

"Physics"

Chi Han et al, "The Quest for a Science of Language Models", Proceedings of the AAAI 2025, Tutorials Session https://glaciohound.github.io/Science-of-LLMs-Tutorial/

attention

embedding

Syntax (language structure)

knowledge (LM & world)

L reasoning (LM capabilities)

Task

"Ethology"

LM architecture design

"Physiology"

scaling laws

"Physics"

LM theory

impossibility results

Chi Han et al, "The Quest for a Science of Language Models", Proceedings of the AAAI 2025, Tutorials Session https://glaciohound.github.io/Science-of-LLMs-Tutorial/

attention

embedding

syntax (language structure)

knowledge (LM & world)

L reasoning (LM capabilities)

Task

"Ethology"

The roadmap is far from comprehensive!

LM architecture design

"Physiology"

scaling laws

"Physics"

LM theory

impossibility results

Chi Han et al, "The Quest for a Science of Language Models", Proceedings of the AAAI 2025, Tutorials Session https://glaciohound.github.io/Science-of-LLMs-Tutorial/

attention

embedding

syntax (language structure)

knowledge (LM & world)

reasoning (LM capabilities)

Task

"Ethology"

Language Modeling

A Transformer-Based Architecture

Physiology: How Do Components Function in Language Models?

Topics

- Attention: Attention, position and context
- **Embeddings**: What is the function of word embeddings

What Is the Function of Word Embeddings

Topic 1: Embedding What Do Word Embeddings Embed?

Previous papers mostly focus on word-level interpretations

(a) Analogical Relations (metric space)

Mikolov, Tomáš, Wen-tau Yih, and Geoffrey Zweig. "Linguistic regularities in continuous space word representations." *Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies*. 2013. Bolukbasi, T., Chang, K. W., Zou, J. Y., Saligrama, V., & Kalai, A. T. (2016). Man is to computer programmer as woman is to homemaker? debiasing word embeddings. Advances in neural information processing systems, 29.

Topic 1: Embedding What Do Word Embeddings Embed?

Previous papers mostly focus on word-level interpretations

italy china france germany russia president commissioner minister superintendent chairman

(b) Meaningful Dimensions (linear Space)

Park, Sungjoon, JinYeong Bak, and Alice Oh. "Rotated word vector representations and their interpretability." Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. 2017.

What Do Word Embeddings Embed?

Previous papers mostly focus on word-level interpretations

(b) Meaningful Dimensions (linear Space)

Bolukbasi, T., Chang, K. W., Zou, J. Y., Saligrama, V., & Kalai, A. T. (2016). Man is to computer programmer as woman is to homemaker? debiasing word embeddings. Advances in neural information processing systems, 29.

ats subject	heavy	commit	game		
sites secor	nds slow	arrival ta	actical		
ser parts busy	drop reel firepower hoped command				
using cause	ed ill oks	crimmage builder	e drafte	d	
ters nuclear ii firms st lobby vote ost vi govern	hay quit yard king ties ers hor sharp	brilliant ₅ guru ^C oly rule brass bu	genius ocky buddy ddies bui	journeymaı rly	n
s folks friei	nd par priest	mate	be	eard	
ads boys _c wives iend ^s e daddy	sons son	chap brother nephe	lad s w	boyhood	he
ancee					

Output Word Embeddings Projecting to Logits

 $P(v|\mathbf{c}) = \overline{\nabla}$ Δu

 $P(X_i | x_1, \cdots, x_{i-1})$

$$, \mathbf{e}_2, \cdots \mathbf{e}_n) = \mathbf{E}$$

$$, x_{i-1})$$

$$\frac{\exp(\mathbf{c}^{\top}\mathbf{e}_{v})}{\lim_{u\in\mathcal{V}}\exp(\mathbf{c}^{\top}\mathbf{e}_{u})}$$

Sequence Shift \approx Word Embedding Transform

 Theorem (Informal): steering between text distribution is associated with a linear transformation on word embedding space under assumptions.

Han, Chi, et al. "Word Embeddings Are Steers for Language Models." Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2024. (Outstanding Paper Award)

Topic 1: Embedding LM-Steer

steering on or

$$\mathbf{e}'_v \leftarrow (I - \epsilon W)\mathbf{e}_v$$

Language Model
Hidden Layers
Negatively steered LM $P_{-\epsilon W}$ Orig

"*My life is <u>boring</u>*"

Han, Chi, et al. "Word Embeddings Are Steers for Language Models." Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2024. (Outstanding Paper Award)

utput word embeddings $\mathbf{e}'_{v} \leftarrow (I + \epsilon W) \mathbf{e}_{v}$ $\mathbf{e}'_{v} \leftarrow \mathbf{e}_{v}$ 6

guage Model Iden Layers

ginal LM P_0

"*My life is <u>okay</u>*"

Language Model Hidden Layers

Positively steered LM $P_{\epsilon W}$ "*My life is <u>brilliant</u>*"

LM-Steer Broken Down

Output word

scale

Language Model Hidden Layers

Training & Inference

Topic 1: Embedding Continuous Steering

Han, Chi, et al. "Word Embeddings Are Steers for Language Models." Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2024. (Outstanding Paper Award)

curves: maximal likelihood betadistribution

Compositional Steering

- LM-Steer 1: $P_{\epsilon_1 W_1}$
- LM-Steer 2: $P_{\epsilon_2 W_2}$

Han, Chi, et al. "Word Embeddings Are Steers for Language Models." Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2024. (Outstanding Paper Award)

Combined LM-Steer: $P_{\epsilon_1 W_1 + \epsilon_2 W_2}$

Compositional Steering

Toxicity

An entanglement between steering dimensions

negative sentiment positive sentiment
Topic 1: Embedding

transfers about half of the detoxification capability

Han, Chi, et al. "Word Embeddings Are Steers for Language Models." Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2024. (Outstanding Paper Award)

Topic 1: Embedding Highlighting Keywords

- Automatically highlighting text spans most related to a distribution.
- Example: toxic word highlighting

Han, Chi, et al. "Word Embeddings Are Steers for Language Models." Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2024. (Outstanding Paper Award)

There's another controversial Hollywood racial decision that Stacey Dash is sinking her teeth into.

The UFC champ then suggested Justino is a longtime PED user with her most d**ning comments.

But I really have a question for you: Why would I go on a game show and play into the bulls**t allowing myself to be ranked by some fake competition?

I think sexism prevents this from being a real win for fat people.

If and they fair be want to non hypocritical idiots they should.

Topic 1: Embedding A Probe on the Word Embedding Space

Dim.	Matched Words
0	mor, bigot, Stupid, retarded, coward, stu
1	stupid, idiot, Stupid, idiots, jerk, patheti
3	idiot, godd, damn,
5	Balk, lur, looms, hides, shadows, White
7	bullshit, fiat, shit, lies, injust, manipula
8	disabled, inactive, whip, emo, partisan,

(Some dimensions were omitted as they match non-English) words)

Han, Chi, et al. "Word Embeddings Are Steers for Language Models." Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2024. (Outstanding Paper Award)

upid, loser, clown, dumb, Dumb, losers, stupidity, garbage

ic, suck, buff, stupidity, mor, damn, ignorant, fools, dumb

es, slippery, winds

tion

spew, bombed, disconnected, gun, failing, Republicans

Topic 1: Embedding Room for Future Research

- resolved in LMs
- Better frameworks for studying the role of word embeddings
- Other functions of word embeddings, such as semantics and sense

• Evolution of contextual embeddings across layers, e.g., how ambiguity is

Topic 2: Attention

Attention, Position and Context

Questions:

- 1. How LMs Deal with Context Length
- 2. How LMs Process Position Information
- 3. How LMs Comprehend Contextual Knowledge

Topic 2: Attention - Question 1: Length Absolute Positional Encoding: X

The absolute positional encoding used in vanilla Transformers is not generalizable to unseen lengths.

Absolute Positional Encoding:

The absolute positional encoding used in vanilla Transformers is not generalizable to unseen lengths.

https://erdem.pl/2021/05/understanding-positional-encoding-in-transformers

Relative Positional Encoding: ?

this problem

Core idea: determining attention based on distance

Relative positional encoding was proposed in the hope to alleviate

Su, Jianlin, et al. "Roformer: Enhanced transformer with rotary position embedding." arXiv preprint arXiv:2104.09864 (2021).

Relative Positional Encoding: ?

this problem

Core idea: determining attention based on distance

Relative positional encoding was proposed in the hope to alleviate

Su, Jianlin, et al. "Roformer: Enhanced transformer with rotary position embedding." arXiv preprint arXiv:2104.09864 (2021).

Topic 2: Attention - Question 1: Length Relative Positional Encoding: ?

lengths.

Negative Log-Likelihood (NLL, also =log(perplexity)) \downarrow

However, current LLMs still struggle on unseen

Factor 1: Unseen Distance

Theorem 1 (Informal): For an attention mechanism using relative positional encoding, the attention logits must explode to infinities to differentiate previously unseen distances apart as the sequence length increases.

Max. Logit in Sequence

8000 Han, Chi, et al. "LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models." Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers). 2024. (Outstanding Paper Award)

Factor 2: Too many tokens

Longer texts require attention on more tokens.

Theorem 2 (informal): If the attention logits are bounded, as the sequence becomes longer, the attention entropy grows to infinity. **Attention Entropy**

Linguistics: Human Language Technologies (Volume 1: Long Papers). 2024. (Outstanding Paper Award)

The entropy of attention distribution in Llama-2 continuously increases with length.

Han, Chi, et al. "LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models." Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational

Topic 2: Attention - Question 1: Length Factor 3: Implicitly Encoded Position From layer 2 and higher, initial few tokens occupy a distinct feature space.

Han, Chi, et al. "LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models." Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers). 2024. (Outstanding Paper Award)

Theorem 3 (Informal): Even without absolute positional embeddings, attention can restore position information of tokens.

Layer 20

Kazemnejad, Amirhossein, et al. "The impact of positional encoding on length generalization in transformers." Advances in Neural Information Processing Systems 36 (2023): 24892-24928.

Han, Chi, et al. "LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models." Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers). 2024. (Outstanding Paper Award)

Han, Chi, et al. "LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models." Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers). 2024. (Outstanding Paper Award)

Length Generalization (to 200M length)

Topic 2: Attention - Question 1: Length Length Generalization (to 200M length)

To Perceive Sensitive Information Re-attending to top-k attention tokens

Why: to acquire key information that might be stored in the middle "ignored" region again.

How: selecting tokens with top-k (e.g., k=4) attention logits, and reintroducing them into attention.

When: when solving information sensitive tasks like question answering, retrieving information from documents, etc.

Topic 2: Attention - Question 2: Position **Positional Generalization Phenomenon** of both humans and language models

Topic 2: Attention - Question 2: Position Humans' Positional Generalization

Task: is the new sentence grammatically correct?

The white cat was big. The black dog ran slowly.	Error Rate (%)
The white was cat big. The black ran dog slowly.	4

Mirault, Jonathan, Joshua Snell, and Jonathan Grainger. "You that read wrong again! A transposed-word effect in grammaticality judgments." Psychological Science 29.12 (2018): 1922-1929.

12

10

Task: tell if the sentence is grammatical or not

Observation: if the sentence is word-transposed from original sentence, it is *less recognizable* (high error)

TW Control Grammatically Correct

Topic 2: Attention - Question 2: Position

LMs Can Understand Perturbed Language

Task: paraphrase if two sentences are duplicate

- Q₁ Does marijuana cause cancer?
- Q₂ How can smoking marijuana give you lung cancer?

(a) Prediction: "duplicate" 0.96

- Q₁ Does marijuana cause cancer?
- $Q_{2'}$ you smoking cancer How marijuana lung can give?

(b) Prediction: "duplicate" 0.98

Task: entailment

if the sentence A contains the answer to question Q

QNLI sentence-pair inputs and their LIME attributions (negative -1, n

Q How long did Phillips manage the Apollo missions?

Mueller agreed, and Phillips managed Apollo from January 1964, unti landing in July 1969, after which he returned to Air Force duty.

Apollo the Phillips How missions long did manage? Q_1

Mueller agreed, and Phillips managed Apollo from January 1964, until A landing in July 1969, after which he returned to Air Force duty.

Pham, Thang, et al. "Out of Order: How important is the sequential order of words in a sentence in Natural Language Understanding tasks?." Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. 2021.

Task: sentiment classification if the sentiment is positive or negative

S	the film 's performances are thrilling.	1.00
S_1	the film thrilling performances are 's.	1.00
S_2	's thrilling film are performances the .	1.00
S_3	's thrilling are the performances film.	1.00

neutral 0, <mark>positive +1</mark>)	Confidence score
il it achieved the first manned	1.00
il it achieved the first manned	0.96

Topic 2: Attention - Question 2: Position In-Distribution Features under Length-Generalization

blue dots: normal features

colored lines: token features of in superlong context under length generalization

to isolate the effect of vectors q_i , k_j and their distance i - j, let us use a "" "fake" distance d instead of i - j

"" "fake" distance d instead of i - j

to isolate the effect of vectors q_i , k_j and their distance i - j, let us use a

Topic 2: Attention - Question 2: Position An Intriguing Learned Feature Pattern

Topic 2: Attention - Question 2: Position The Pattern Proves to Disentangle Attention

Theorem 1. There exists functions f(q, i - j), g(q, k) that so that the effect of i - j and k can be asymptotically disentangled as:

w(i-j, q, k) = f(q, i-j) + g(q, k) + o(R)(5)

, where

 $R = \max\left(Range(f), Range(g)\right)$

stands for the larger one of extreme range of f and g as i, j, k vary

Message: LMs don't bond semantic feature k_j with their position relations i - j!

Topic 2: Attention - Question 2: Position LMs Are Stable on Disentangled Position

	1	0.5	0.1	0.05	0.01	0.001
1000 -	4.201	4.039	3.804	3.757	3.705	3.690
100 -	4.232	4.109	3.850	3.785	3.708	3.689
10 -	4.279	4.108	3.828	3.771	3.706	3.689
1 -	3.994	3.889	3.743	3.710	3.693	3.689

Perplexity if we shuffle γ ratio of words within max range D

Han, Chi, et al. "Computation Mechanism Behind LLM Position Generalization" arXiv preprint arXiv:2503.13305 (2025)

	1	0.5	0.1	0.05	0.01	0.001
1000 -	26.888	10.346	3.784	3.715	3.691	3.688
100 -	101.511	5.059	3.729	3.707	3.691	3.688
10 -	40.613	4.969	3.725	3.699	3.690	3.688
1 -	4.657	4.013	3.704	3.696	3.689	3.688

Perplexity if we shuffle γ ratio of *features* within max range D

Topic 2: Attention - Question 2: Position LMs Are Stable on Disentangled Position

QA Task accuracy if we shuffle γ ratio of words or features within max range 5

Han, Chi, et al. "Computation Mechanism Behind LLM Position Generalization" arXiv preprint arXiv:2503.13305 (2025)

Qasper Accuracy $0.5 \quad 0.1 \quad 0.05 \quad 0.01 \quad 0.001$ 42.53 37.39 41.44 42.34 42.37 42.53

Topic 2: Attention - Question 3: Contextual Knowledge Attention Also Explains In-Context Learning

samples

. . .

test input

demonstrative Input: moving and important. Input: excruciatingly unfunny and pitifully unromantic.

Input: intelligent and moving

In-context learning: completing tasks based on demonstrations

Topic 2: Attention - Question 3: Contextual Knowledge Attention Also Explains In-Context Learning

demonstrative Input: moving and important. samples Input: excruciatingly unfunny and pitifully unromantic.

test input

Input: intelligent and moving

 $\rightarrow K(\mathbf{x}_i, \mathbf{x}_{test})$ —

(similarity kernel)

- (i.e., a kernel-regression)
- kernel)

• The output \hat{y} is sampled from a weighted average over example outputs y_i

the weights are computed by a certain similarity metric $K(x_i, x_{text})$ (i.e., a

Topic 2: Attention - Question 3: Contextual Knowledge

The Kernel Originates from Pre-Training

Kernel regression (hypothesized ICL algorithm)

Han, Chi, et al. "Explaining emergent in-context learning as kernel regression." arXiv preprint arXiv:2305.12766 (2023).

 $\hat{\mathbf{y}} = \frac{\sum_{i=1}^{n} \mathbf{e}(y_i) \mathcal{K}(\mathbf{x}_{test}, \mathbf{x}_i)}{\sum_{i=1}^{n} \mathcal{K}(\mathbf{x}_{test}, \mathbf{x}_i)}$

Topic 2: Attention - Question 3: Contextual Knowledge

The Kernel Originates from Pre-Training

Kernel regression (hypothesized ICL algorithm)

$$\hat{\mathbf{y}} = \frac{\sum_{i=1}^{n} \mathbf{e}(y_i) \mathcal{K}(\mathbf{x}_{test}, \mathbf{x}_i)}{\sum_{i=1}^{n} \mathcal{K}(\mathbf{x}_{test}, \mathbf{x}_i)}$$

The kernel (similarity metric)

$$\mathcal{K}(\mathbf{x},\mathbf{x}') = \mathbf{vec}(\mathbf{x},\mathbf{x}')$$

A representation of sample input x for predicting the next token

Han, Chi, et al. "Explaining emergent in-context learning as kernel regression." arXiv preprint arXiv:2305.12766 (2023).

 $(T_{\mathbf{x}})^{\mathsf{T}} \sum_{p_{pre-train}}^{-1} \operatorname{vec}(T_{\mathbf{x}'})$ A matrix about the pretraining objective

Topic 2: Attention - Question 3: Contextual Knowledge The Attention Applies to y_i As Kernel Regression

Topic 2: Attention - Question 3: Contextual Knowledge

The Explanation Aligns With the Model Output

Certain attention heads can reconstruct the LLM ICL output with the explanation.

Topic 2: Attention - Question 3: Contextual Knowledge The Attention

Method	sst2	mnli	rotten- tomatoes	tweet_eval (hate)	tweet_eval (irony)	tweet_eval (offensive)
GPT-J-6B ICL	0.805	0.383	0.671	0.539	0.519	0.542
all-MiniLM-L6-v2 bert-base-nli-mean-tokens KR task-specific best head KR overall best head KR	0.503 0.523 0.789 0.766	0.321 0.325 0.974 0.808	0.478 0.502 0.692 0.648	0.548 0.545 0.560 0.462	0.491 0.479 0.584 0.446	0.588 0.597 0.560 0.462
The KR explanation	n expl	ained	l most ta	asks well ddings m	(except	for MNL

Topic 2: Attention

Room for Future Research

- Attention module's role in syntax and word order processing
- Explaining and addressing and lost-in-the-middle and position bias problem
- Extension to other model architectures

More precise categorization of attention's role in demonstration learning
Summary

- Topic 1: What Is the Function of Word Embeddings
- Topic 2: Attention, Position and Context
 - Q1: How LMs Deal with Context Length
 - Q2: How LMs Process Position Information
 - Q3: How LMs Comprehend Contextual Knowledge

Towards a Physiology of Language Models: Elucidating and Utilizing Hidden Language Representation

A Retrospect of Science of LMs

Model-Oriented

Behavior-Oriented

