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Why Do We Need A New Science?
New sciences often emerge as a result of scaling up old sciences

Machine Learning Deep Learning Language Models
PAC theory, 
optimization, 
…

Gradient Descent, 
Neural Tangent 
Kernel, …

A Sciences of LMs
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Model-Data-Task Triangular: A Roadmap
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Model-Data-Task Triangular: A Roadmap
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Data Taskperformance 
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LM architecture 
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from comprehensive!
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Prerequisites: Language Modeling

Large   Language   Models   are

P(Xn+1 |x1, x2, ⋯, xn)

[x1, x2, ⋯, xn]Input:

Language 
Model:

Output: xn+1

“impressive”

Language Modeling

next-word probability

A Transformer-Based Architecture

One Layer

Causal Self-Attention

past tokens last token

output feature

Multi-Layer 
Perceptron (MLP)

last layer

next layer



Physiology: How Do Components 
Function in Language Models?
Topics


• Attention: Attention, position and context


• Embeddings: What is the function of word embeddings



What Is the Function of Word 
Embeddings

Topic 1: Embedding



What Do Word Embeddings Embed?

Figure 2: Left panel shows vector offsets for three word
pairs illustrating the gender relation. Right panel shows
a different projection, and the singular/plural relation for
two words. In high-dimensional space, multiple relations
can be embedded for a single word.

provided. We have explored several related meth-
ods and found that the proposed method performs
well for both syntactic and semantic relations. We
note that this measure is qualitatively similar to rela-
tional similarity model of (Turney, 2012), which pre-
dicts similarity between members of the word pairs
(xb, xd), (xc, xd) and dis-similarity for (xa, xd).

6 Experimental Results

To evaluate the vector offset method, we used
vectors generated by the RNN toolkit of Mikolov
(2012). Vectors of dimensionality 80, 320, and 640
were generated, along with a composite of several
systems, with total dimensionality 1600. The sys-
tems were trained with 320M words of Broadcast
News data as described in (Mikolov et al., 2011a),
and had an 82k vocabulary. Table 2 shows results
for both RNNLM and LSA vectors on the syntactic
task. LSA was trained on the same data as the RNN.
We see that the RNN vectors capture significantly
more syntactic regularity than the LSA vectors, and
do remarkably well in an absolute sense, answering
more than one in three questions correctly. 2

In Table 3 we compare the RNN vectors with
those based on the methods of Collobert and We-
ston (2008) and Mnih and Hinton (2009), as imple-
mented by (Turian et al., 2010) and available online
3 Since different words are present in these datasets,
we computed the intersection of the vocabularies of
the RNN vectors and the new vectors, and restricted
the test set and word vectors to those. This resulted
in a 36k word vocabulary, and a test set with 6632

2Guessing gets a small fraction of a percent.
3http://metaoptimize.com/projects/wordreprs/

Method Adjectives Nouns Verbs All
LSA-80 9.2 11.1 17.4 12.8
LSA-320 11.3 18.1 20.7 16.5
LSA-640 9.6 10.1 13.8 11.3
RNN-80 9.3 5.2 30.4 16.2
RNN-320 18.2 19.0 45.0 28.5
RNN-640 21.0 25.2 54.8 34.7
RNN-1600 23.9 29.2 62.2 39.6

Table 2: Results for identifying syntactic regularities for
different word representations. Percent correct.

Method Adjectives Nouns Verbs All
RNN-80 10.1 8.1 30.4 19.0

CW-50 1.1 2.4 8.1 4.5
CW-100 1.3 4.1 8.6 5.0
HLBL-50 4.4 5.4 23.1 13.0
HLBL-100 7.6 13.2 30.2 18.7

Table 3: Comparison of RNN vectors with Turian’s Col-
lobert and Weston based vectors and the Hierarchical
Log-Bilinear model of Mnih and Hinton. Percent correct.

questions. Turian’s Collobert and Weston based vec-
tors do poorly on this task, whereas the Hierarchical
Log-Bilinear Model vectors of (Mnih and Hinton,
2009) do essentially as well as the RNN vectors.
These representations were trained on 37M words
of data and this may indicate a greater robustness of
the HLBL method.

We conducted similar experiments with the se-
mantic test set. For each target word pair in a rela-
tion category, the model measures its relational sim-
ilarity to each of the prototypical word pairs, and
then uses the average as the final score. The results
are evaluated using the two standard metrics defined
in the task, Spearman’s rank correlation coefficient
� and MaxDiff accuracy. In both cases, larger val-
ues are better. To compare to previous systems, we
report the average over all 69 relations in the test set.

From Table 4, we see that as with the syntac-
tic regularity study, the RNN-based representations
perform best. In this case, however, Turian’s CW
vectors are comparable in performance to the HLBL
vectors. With the RNN vectors, the performance im-
proves as the number of dimensions increases. Sur-
prisingly, we found that even though the RNN vec-

749

Mikolov, Tomáš, Wen-tau Yih, and Geoffrey Zweig. "Linguistic regularities in continuous space word representations." Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: 
Human language technologies. 2013. 
Bolukbasi, T., Chang, K. W., Zou, J. Y., Saligrama, V., & Kalai, A. T. (2016). Man is to computer programmer as woman is to homemaker? debiasing word embeddings. Advances in neural information processing systems, 29.

(a) Analogical Relations (metric space)

Previous papers mostly focus on word-level interpretations
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What Do Word Embeddings Embed?

Park, Sungjoon, JinYeong Bak, and Alice Oh. "Rotated word vector representations and their interpretability." Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. 2017.

(a) SG word projected to {a1,a2} and visualization of the vectors in 300 dimensions

(b) Rotated word vectors in {aR
1 ,aR

2 } and visualization of the vectors in 300 dimensions

Figure 1: Overview of rotating word vectors dimensions. We plot (a) unrotated and (b) rotated skip-
gram word vectors in 2-D projected embedding space using PCA (left), and visualization of the vectors
in original 300 dimensional space (right). Colors of words indicates the meaning of countries (Red)
and positions (Blue). As in (b), after the dimensions are rotated, interpretability for each dimensions is
improved having meaning of countries and positions.

tor representations work well by revealing a hid-
den structure of the original word vectors. That is,
it is meaningful to transform the hard-to-interpret
dimensions of the pre-built word vectors, which
are widely used, to more interpretable vectors. We
also show that the rotated vectors retain their effec-
tiveness with respect to downstream tasks without
re-building the vector representations.

Our method can be applied to any type of word
vectors as a post-processing method such that it
does not require a large corpus to be trained. In
addition, it does not require additional number of
dimensions so it does not increase the complexity
of the model. Furthermore, we explore the charac-
teristics of the rotated word vectors.

2 Factor Rotation

We take the rotation algorithm from the ex-
ploratory factor analysis (EFA) conducted to ver-
ify the construct validity of the psychological scale
in development. For example, when validating a

scale measuring respondents’ latent factors, such
as “Engineering problem solving” and “Interest in
engineering”, items should be similar within a fac-
tor, and distinguished between factors. As shown
in Table 1, EFA projects every item into the latent
factor space as an unrotated factor loading matrix.
However, since it is unclear what the factor means,
factor rotation is applied to the matrix that pro-
duces the rotated factor loading matrix which en-
hances the interpretability of the dimensions (Os-
borne, 2015).

2.1 Rotating Factors

The rotation algorithm transforms factor loading
matrix to the simple structure which is much eas-
ier to interpret (Thurstone, 1947). It involves post-
multiplication of a p ⇥ m input matrix A by an
m ⇥ m square matrix T , to compute the rotated
matrix ⇤,

⇤ = AT (1)

402

(b) Meaningful Dimensions (linear Space)

“Position” dim →

“country” dim →

Previous papers mostly focus on word-level interpretations
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What Do Word Embeddings Embed?
Previous papers mostly focus on word-level interpretations

Bolukbasi, T., Chang, K. W., Zou, J. Y., Saligrama, V., & Kalai, A. T. (2016). Man is to computer programmer as woman is to homemaker? debiasing word embeddings. Advances in neural information processing systems, 29.

(b) Meaningful Dimensions (linear Space)Figure 7: Selected words projected along two axes: x is a projection onto the difference between the
embeddings of the words he and she, and y is a direction learned in the embedding that captures gender
neutrality, with gender neutral words above the line and gender specific words below the line. Our hard
debiasing algorithm removes the gender pair associations for gender neutral words. In this figure, the words
above the horizontal line would all be collapsed to the vertical line.

����!
softball �

�����!
football) are shown in the table. Words such as receptionist, waitress and homemaker are closer to

softball than football, and the �’s between these words and softball is substantial (67%, 35%, 38%, respectively).
This suggests that the apparent similarity in the embeddings of these words to

����!
softball can be largely explained

by gender biases in the embedding. Similarly, businessman and maestro are closer to football and this can
also be attributed largely to indirect gender bias, with �’s of 31% and 42%, respectively.

6 Debiasing algorithms

The debiasing algorithms are defined in terms of sets of words rather than just pairs, for generality, so that
we can consider other biases such as racial or religious biases. We also assume that we have a set of words to
neutralize, which can come from a list or from the embedding as described in Section 7. (In many cases it
may be easier to list the gender specific words not to neutralize as this set can be much smaller.)

The first step, called Identify gender subspace, is to identify a direction (or, more generally, a subspace)
of the embedding that captures the bias. For the second step, we define two options: Neutralize and
Equalize or Soften. Neutralize ensures that gender neutral words are zero in the gender subspace.
Equalize perfectly equalizes sets of words outside the subspace and thereby enforces the property that any
neutral word is equidistant to all words in each equality set. For instance, if {grandmother, grandfather} and
{guy, gal} were two equality sets, then after equalization babysit would be equidistant to grandmother and
grandfather and also equidistant to gal and guy, but presumably closer to the grandparents and further from
the gal and guy. This is suitable for applications where one does not want any such pair to display any bias
with respect to neutral words.

The disadvantage of Equalize is that it removes certain distinctions that are valuable in certain applications.
For instance, one may wish a language model to assign a higher probability to the phrase to grandfather a
regulation) than to grandmother a regulation since grandfather has a meaning that grandmother does not –
equalizing the two removes this distinction. The Soften algorithm reduces the differences between these sets

11

gender neutral 

gender-related
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Word Embeddings in Causal LMs

x1 x2 x3 x4 x5 x6 x7

Input Word 
Embeddings e′ x1

e′ x2
e′ x3

e′ x4
e′ x5

e′ x6
e′ x7

Contextual 
Vectors

Output Word 
Embeddings

Causal/Generative Language Model

= E(e1, e2, ⋯en)

c(x1) c(x1, x2) ⋯

P(X2 |x1) P(X3 |x1, x2) ⋯

Text
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Output Word Embeddings
Projecting to Logits

Word Embeddings Are Steers for Language Models

Chi Han, Jialiang Xu, Manling Li, Yi Fung, Chenkai Sun,
Nan Jiang, Tarek Abdelzaher, Heng Ji
University of Illinois Urbana-Champaign

{chihan3, jx17, manling2, yifung2, chenkai5

nanjiang, zaher, hengji}@illinois.edu

Abstract

Language models (LMs) automatically learn
word embeddings during pre-training on lan-
guage corpora. Although word embeddings
are usually interpreted as feature vectors for
individual words, their roles in language model
generation remain underexplored. In this work,
we theoretically and empirically revisit out-
put word embeddings and find that their lin-
ear transformations are equivalent to steering
language model generation styles. We name
such steers LM-Steers and find them existing
in LMs of all sizes. It requires learning param-
eters equal to 0.2% of the original LMs’ size
for steering each style. On tasks such as lan-
guage model detoxification and sentiment con-
trol, LM-Steers can achieve comparable or su-
perior performance compared with state-of-the-
art controlled generation methods while main-
taining a better balance with generation qual-
ity. The learned LM-Steer serves as a lens in
text styles: it reveals that word embeddings are
interpretable when associated with language
model generations and can highlight text spans
that most indicate the style differences. An
LM-Steer is transferrable between different lan-
guage models by an explicit-form calculation.
One can also continuously steer LMs simply
by scaling the LM-Steer or compose multi-
ple LM-Steers by adding their transformations.
Our codes are publicly available at https:

//github.com/Glaciohound/LM-Steer. 1

1 Introduction

In recent years, language models (LMs) have sig-
nificantly advanced various natural language pro-
cessing (NLP) tasks such as machine translation,
sentiment analysis, schema induction, summariza-
tion, and sociocultural understanding (Brown et al.,
2020; Kojima et al.; Li et al., 2023b; Radford et al.,

1Please be advised that this paper contains potentially
controversial results and examples to some readers, included
solely for research purposes to explore model capabilities.

Language Model 
Hidden Layers

Language Model 
Hidden Layers

steering on output word embeddings

Original LM P0

Language Model 
Hidden Layers

Positively steered LM P�WNegatively steered LM P��W

e� v � (I � �W )ev e� v � ev e� v � (I + �W )ev

“My life is brilliant”“My life is boring” “My life is okay”

Figure 1: We find hidden steers in output word em-
beddings. By linearly transforming word embeddings,
language model generations are “steered” toward differ-
ent style polarity and levels.

2018; OpenAI, 2023; Fung et al., 2023, 2024).
Their output word embeddings are learned au-
tomatically to calculate word output likelihoods
during pre-training on language corpora. Typically,
the dot product c>ev between a computed context
vector and a learnable output word embedding ev

for token v is usually used as the word logit. The
word output probability is defined as the softmax
over all word logits:

P (v|c) =
exp(c>ev)P
u2V exp(c>eu)

, (1)

where V is the whole vocabulary. While being
a fundamental topic in natural language process-
ing, previous work on interpreting them is usually
focused at the word level, such as their semantic
information (Şenel et al., 2018), word senses (He-
witt et al., 2023), and analogical relations (Mikolov
et al., 2013; Park et al., 2017). However, as the
word embeddings are optimized for generation loss
during pre-training, the learned embedding space
should be closely associated with LMs’ generation
distributions. In this work, we propose to study the
roles that word embeddings play in LM generation,
which remains an underexplored topic, and ana-
lyze a simple while effective LM steering method
LM-Steer.
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Sequence Shift  Word Embedding Transform≈
• Theorem (Informal): steering between text distribution is 

associated with a linear transformation on word embedding space 
under assumptions.

pinit h1

T

v1

Bp′ init

ev

…

E WE
linear transformation

state 
initialization 
changes

…

equivalent to
Han, Chi, et al. "Word Embeddings Are Steers for Language Models." Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2024. (Outstanding Paper Award)
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LM-Steer

Language Model 
Hidden Layers

Language Model 
Hidden Layers

steering on output word embeddings

Original LM P0

Language Model 
Hidden Layers

Positively steered LM PϵWNegatively steered LM P−ϵW

e′ v ← (I − ϵW )ev e′ v ← ev e′ v ← (I + ϵW )ev

“My life is brilliant”“My life is boring” “My life is okay”
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LM-Steer Broken Down
+ = ϵ ⋅ W E

Language 
Model Hidden 
Layers

Output word 
embedding E

The steering 
scale the steering matrix

“       ” “       ”

for each word:
e′ v = ev + ϵWev

W

ϵ W
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Training & Inference

Language Model 
Hidden Layers

output word 
embeddings eo

adapted output word 
embeddings e′ o+ = ϵWeo

original LM P0 “Steered” LM PϵW

Language Model 
Hidden Layers

(a) LM-Steer overview (b) Training (c) Generation

PϵW

P−ϵW

objective:  
maximize likelihood

objective:  
maximize likelihood

positive 
labelled texts

negative 
labelled texts

step 1: 
setting a “steer” value

ϵ = 3e − 3

step 2: 
Plugging in and generate
my life is ____

brilliant
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Continuous Steering
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Compositional Steering

LM-Steer 1: 


LM-Steer 2: 


Combined LM-Steer: 

Pϵ1W1

Pϵ2W2

Pϵ1W1+ϵ2W2
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Compositional Steering

Sentiment control  
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Transferring to Another LM

0.2

0.275

0.35

0.425

0.5

gpt2 gpt2-medium gpt2-xl gpt-j-6b

Transferred

Avg. Max. Toxicity ( )↓
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Trained

(124M) (355M) (1.5B) (2.7B)

transfers about half of the detoxification capability
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Highlighting Keywords

• Automatically highlighting text 
spans most related to a 
distribution.


• Example: toxic word highlighting

Dim. Matched Words

0 mor, bigot, Stupid, retarded, coward, stupid, loser, clown, dumb, Dumb, losers, stupidity,
garbage , idiots, fools, idiot, lame

1 stupid, idiot, Stupid, idiots, jerk, pathetic, suck, buff, stupidity, mor, damn, ignorant, fools,
dumb , disgusting , damned, narcissistic, troll

3 idiot, godd, damn,

5 Balk, lur, looms, hides, shadows, Whites, slippery, winds

7 bullshit, fiat, shit, lies, injust, manipulation

8 disabled, inactive, whip, emo, partisan, spew, bombed, disconnected, gun, failing, Republi-
cans , defeated, Jeb, blowing , bombard, ineffective, reload, destructive, flo, blown

9 winners, upside

Table 6: Word embedding dimensions that are most influenced by LM-Steer on detoxification task.

There’s another controversial Hollywood racial
decision that Stacey Dash is sinking her teeth into.

The UFC champ then suggested Justino is a
longtime PED user with her most d**ning com-
ments.

But I really have a question for you: Why would
I go on a game show and play into the bulls**t
allowing myself to be ranked by some fake com-
petition?

I think sexism prevents this from being a real
win for fat people.

If they want to be fair and non
hypocritical idiots they should.

Table 7: Toxic sentences with toxic keywords high-
lighted by LM-Steer after training detoxification on
GPT2-Large.

5.3 Transfering LM-Steer Between Models
A much-desired property of LM-Steer, because of
its theoretical soundness, is its transferability to
other language models. Details and derivations of
LM-Steer transfer are in Appendix F. Intuitively
speaking, the original logit c>ev can be understood
as a similarity or matching metric between context
vector c and word embedding ev. In LM-Steer,
the logit is offset by ✏ times c

>
Wev, which is

also a bilinear similarity. To transform this LM-
Steer to another language model, we need to map
the context vectors and word embeddings between
word embedding spaces ev = He

0
v

c
>
Wev = (Hc

0)>W (He
0
v) = c

0>(H>
WH)e0v

(3)

We work by first identifying a linear mapping H

from target LM word embeddings to source LM
word embeddings. Then, the matrix H

>
WH can

be inserted into the target LM as LM-Steer. This is
motivated by prior work on the linear mapping be-
tween word embeddings from different models (Li
et al., 2021). Finally, the calculated steering matrix
is directly applied to the target LM. Figure 5(a)
shows the performance after we transfer the LM-
Steer learned on GPT2-large to LMs of other sizes,
ranging from gpt2 (124M) to GPT-J-6B (6B). We
can see a uniform improvement in transferred LM-
Steers, with GPT2 and GPT2-medium getting sim-
ilar scores (0.307 and 0.308) to the best baseline
(DExperts).

6 Conclusions
In this work, we discover the prevalent phe-
nomenon of word embeddings containing steers for
language model generation. We demonstrate the
promise and efficacy of LM-Steer, a theoretically
grounded, simple, and lightweight approach for the
steering of generative language models. LM-Steer
can model various styles and achieve comparable
or superior performance to baselines in language
model detoxification and generation control. LM-
Steer also allows for continuous and compositional
control and can be transferred to other language
models. More importantly, it provides an inter-
pretation of how word embeddings interplay with
language model generation. So far, we have only
studied output word embeddings, so it is intriguing
to ask whether similar phenomena apply to other
components, such as input word embeddings and
hidden layers.
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A Probe on the Word Embedding Space

(Some dimensions were omitted as they match non-English 
words)

personal 
abuses

political

curses

critiques

Topic 1: Embedding

Han, Chi, et al. "Word Embeddings Are Steers for Language Models." Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2024. (Outstanding Paper Award)



Room for Future Research

• Evolution of contextual embeddings across layers, e.g., how ambiguity is 
resolved in LMs


• Better frameworks for studying the role of word embeddings


• Other functions of word embeddings, such as semantics and sense

Topic 1: Embedding



Topic 2: Attention

Attention, Position and Context

Questions:


1. How LMs Deal with Context Length


2. How LMs Process Position Information


3. How LMs Comprehend Contextual Knowledge



Absolute Positional Encoding: ❌

The absolute positional encoding used in vanilla Transformers is not 
generalizable to unseen lengths.

Unseen 
position
s

???

Topic 2: Attention - Question 1: Length



Absolute Positional Encoding: ❌

The absolute positional encoding used in vanilla Transformers is not 
generalizable to unseen lengths.

https://erdem.pl/2021/05/understanding-positional-encoding-in-transformers

Unseen 
position
s

???
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Su, Jianlin, et al. "Roformer: Enhanced transformer with rotary position embedding." arXiv preprint arXiv:2104.09864 (2021).

RoPE:

Relative Positional Encoding: ❓
Relative positional encoding was proposed in the hope to alleviate 
this problem


Core idea: determining attention based on distance

(Used in 
LLaMA, 
Llama-2, 
GPT-J, etc.)

x = (
… …

rot(x)
 …

x1, x2, x3, x4, xd)… … xd−1,
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Su, Jianlin, et al. "Roformer: Enhanced transformer with rotary position embedding." arXiv preprint arXiv:2104.09864 (2021).

RoPE:

Relative Positional Encoding: ❓
Relative positional encoding was proposed in the hope to alleviate 
this problem


Core idea: determining attention based on distance

(Used in 
LLaMA, 
Llama-2, 
GPT-J, etc.)

x = (
… …

rot(x)
 …

x1, x2, x3, x4, xd)… … xd−1,



only depends on 

, regardless of 
 or .

li,j = rot(qi)⊤rot(kj)

i − j
i j

Topic 2: Attention - Question 1: Length



length

Negative Log-Likelihood (NLL, also = (perplexity)) log ↓

Relative Positional Encoding: ❓
However, current LLMs still struggle on unseen 
lengths.

Low perplexity, good fluency

High perplexity, bad fluency

Topic 2: Attention - Question 1: Length



Factor 1: Unseen Distance
Theorem 1 (Informal): For an attention mechanism using relative positional 
encoding, the attention logits must explode to infinities to differentiate 
previously unseen distances apart as the sequence length increases. 

length

Max. Logit in Sequence

The attention logits in 
Llama-2 explode as 
length exceeds the pre-
training limit.

pre-training 
length bound = 
4096

Han, Chi, et al. "LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models." Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational 
Linguistics: Human Language Technologies (Volume 1: Long Papers). 2024. (Outstanding Paper Award)
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Factor 2: Too many tokens
Longer texts require attention on more tokens. 

Theorem 2 (informal): If the attention logits are bounded, as the sequence 
becomes longer, the attention entropy grows to infinity. 

length

Attention Entropy

The entropy of attention 
distribution in Llama-2 
continuously increases 
with length.

Han, Chi, et al. "LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models." Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational 
Linguistics: Human Language Technologies (Volume 1: Long Papers). 2024. (Outstanding Paper Award)
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Factor 3: Implicitly Encoded Position

Layer 2 Layer 3

Layer 5 Layer 10 Layer 20

Initial few tokens

Initial few tokens
Initial few tokens

Initial few tokens

Layer 1

Initial few tokens

From layer 2 and higher, initial few tokens occupy a distinct feature 
space.

Theorem 3 (Informal): Even 
without absolute positional 
embeddings, attention can 
restore position information 
of tokens.

Kazemnejad, Amirhossein, et al. "The impact of positional encoding on length 
generalization in transformers." Advances in Neural Information Processing 
Systems 36 (2023): 24892-24928.

Han, Chi, et al. "LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models." Proceedings of the 2024 
Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies 
(Volume 1: Long Papers). 2024. (Outstanding Paper Award)
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A Conceptual Model of Relative Position Encoding0 1 2 3 4 5 6 7
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(a) Proposed Solution: LM-Infinite 

i distance

(b) A Conceptual Model of Relative Positional Attention
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essential for LLMs

starting 
tokens middle tokens rear tokens

encode more 
absolute 
position

encode more 
relative 
position

less position-sensitive

Han, Chi, et al. "LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models." Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational 
Linguistics: Human Language Technologies (Volume 1: Long Papers). 2024. (Outstanding Paper Award)

Topic 2: Attention - Question 1: Length



Solution: LM-Infinite
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Length Generalization (to 200M length)
LLaMA

Llama-2

GPT-J-6B

MPT-7B

MPT-7B + LM-Infinite

GPT-J-6B + LM-Infinite

Llama-2 + LM-Infinite

LLaMA + LM-Infinite

MPT-7B-Storywriter

Negative Log-Likelihood

Length
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Length Generalization (to 200M length)

LLaMA

Llama-2

GPT-J-6B

MPT-7B

MPT-7B + LM-Infinite

GPT-J-6B + LM-Infinite

Llama-2 + LM-Infinite

LLaMA + LM-Infinite

MPT-7B-Storywriter

Negative Log-Likelihood

Length
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To Perceive Sensitive Information
Re-attending to top-k attention tokens

e.g. 1st large attention

Why: to acquire key 
information that might be 
stored in the middle 
“ignored” region again.


How: selecting tokens with 
top-k (e.g., k=4) attention 
logits, and reintroducing 
them into attention.


When: when solving 
information sensitive tasks 
like question answering, 
retrieving information from 
documents, etc.

Topic 2: Attention - Question 1: Length



Positional Generalization Phenomenon
of both humans and language models

Topic 2: Attention - Question 2: Position

(a) Position Generalization of Humans & LLMs
Order Transposition

Length Generalization

regular text

perturbed text

familiar length

extreme length

(b) Disentangled Position and Semantics in Attention

Self-Attention

qivj, kj( j ≤ i)

softmax average

≈ +
logit map

distance 
pattern

semantic 
relevance

determined by the 
distance  
between tokens

i − j

determined by 
relevance between 
qi, kj

Han, Chi, et al. "Computation Mechanism Behind LLM Position Generalization" arXiv preprint arXiv:2503.13305 (2025)



Humans’ Positional Generalization
Topic 2: Attention - Question 2: Position

Mirault, Jonathan, Joshua Snell, and Jonathan Grainger. "You that read wrong again! A transposed-word effect in grammaticality judgments." Psychological Science 29.12 (2018): 1922-1929.

1924 Mirault et al.

monetary compensation (€10/hr) or course credit. They 
reported having normal or corrected-to-normal vision, 
ranged in age from 18 to 30 years (M = 22.2 years, SD = 
2.9), and signed informed-consent forms prior to partici-
pation. Ethics approval was obtained from the Comité de 
Protection des Personnes SUD-EST IV (No. 17/051), and 
this research was carried out in accordance with the pro-
visions of the World Medical Association Declaration of 
Helsinki.

Design and stimuli. We selected pairs of grammati-
cally correct sentences2 that were then used to generate 
the corresponding ungrammatical word sequences formed 
of the same words. First, we constructed pairs of five-
word sentences that contained two words (e.g., “was big,” 
“ran slowly”), such that recombining the two words while 
respecting word order led to ungrammatical sequences 
(e.g., “was slowly,” “ran big”). This led to a set of four base 
sequences (i.e., a sequence of five words), two of which 
were grammatical and two ungrammatical (see Table 1). 
Using these four base sequences, we then created trans-
posed-word versions of each sequence by transposing 
the words at Positions 3 and 4. The transpositions involved 
words from different grammatical categories, and 21% (17 
of 80) of the transpositions involved a function word. We 
then constructed four different ungrammatical test 
sequences, two of which were derived from a grammati-
cal base sequence and two from an ungrammatical base 
sequence. This structure of quadruplets of base sequences 
and the corresponding test sequences allowed us to test 
the same words in the grammatical and ungrammatical 

base-sequence conditions. For simplicity, we refer to the 
grammatical base-sequence condition as the transposed-
word condition, and the ungrammatical base-sequence 
condition as the control condition, which represent the 
two levels of base-sequence grammaticality. This experi-
mental design notably allowed us to control for the posi-
tion in which the sequence becomes ungrammatical, as 
well as the nature of the grammatical violation in the 
transposed-word and control conditions.

Following the above constraints, we constructed 160 
ungrammatical test sequences, each containing five 
words. These ungrammatical test sequences were con-
structed from 80 grammatically correct base sequences 
(i.e., syntactically correct sentences in French) and 80 
ungrammatical base sequences (see Table 1). The 
words in all of these sequences were 1 to 11 letters 
long with an average length of 4.95 letters and an aver-
age frequency of 3,575 occurrences per million (New, 
Pallier, Brysbaert, & Ferrand, 2004), which is equivalent 
to 6.55 Zipf (van Heuven, Mandera, Keuleers, & 
Brysbaert, 2014). Grammaticality of the base sequence 
was the only manipulation, giving rise to the two types 
of ungrammatical test sequence: transposed word (derived 
from a grammatically correct base sequence) and control 
(derived from an ungrammatical base sequence). For the 
purposes of the grammaticality judgment task, the experi-
ment included an equal number of grammatically correct 
sentences. These were constructed to have the same 
grammatical structures as the grammatically correct base 
sequences. To avoid repetition of sequences containing 
the same words (e.g., “Ton petit avait chat faim,” “Ton 

Table 1. Construction of the Critical Ungrammatical Test Sequences Using 
French Examples Taken From the Experiments and Providing English Examples 
for Convenience

Sequence
Example from the  

experiments (French)
Example used to illustrate 

the design (English)

Base  
 Grammatical Ton petit chat avait faim.

Cette grande tasse est cassée.
The white cat was big.
The black dog ran slowly.

 Ungrammatical Ton petit chat avait cassée.
Cette grande tasse est faim.

The white cat was slowly.
The black dog ran big.

Test  
 Transposed word Ton petit avait chat faim.

Cette grande est tasse cassée.
The white was cat big.
The black ran dog slowly.

 Control Ton petit avait chat cassée.
Cette grande est tasse faim.

The white was cat slowly.
The black ran dog big.

Note: Examples illustrating how the critical ungrammatical test sequences used in the 
experiments (French) were constructed from quadruplets of base sequences of five words 
that could form a correct sentence (grammatical) or not (ungrammatical). The point at which 
the sequence becomes ungrammatical is indicated by an underscore (not present in the 
experiments). This was either the third or the fourth word in the sequence and was the same 
in the transposed-word and control conditions. The English examples used in the main text are 
provided for convenience. They are not translations of the French examples.

1924 Mirault et al.

monetary compensation (€10/hr) or course credit. They 
reported having normal or corrected-to-normal vision, 
ranged in age from 18 to 30 years (M = 22.2 years, SD = 
2.9), and signed informed-consent forms prior to partici-
pation. Ethics approval was obtained from the Comité de 
Protection des Personnes SUD-EST IV (No. 17/051), and 
this research was carried out in accordance with the pro-
visions of the World Medical Association Declaration of 
Helsinki.

Design and stimuli. We selected pairs of grammati-
cally correct sentences2 that were then used to generate 
the corresponding ungrammatical word sequences formed 
of the same words. First, we constructed pairs of five-
word sentences that contained two words (e.g., “was big,” 
“ran slowly”), such that recombining the two words while 
respecting word order led to ungrammatical sequences 
(e.g., “was slowly,” “ran big”). This led to a set of four base 
sequences (i.e., a sequence of five words), two of which 
were grammatical and two ungrammatical (see Table 1). 
Using these four base sequences, we then created trans-
posed-word versions of each sequence by transposing 
the words at Positions 3 and 4. The transpositions involved 
words from different grammatical categories, and 21% (17 
of 80) of the transpositions involved a function word. We 
then constructed four different ungrammatical test 
sequences, two of which were derived from a grammati-
cal base sequence and two from an ungrammatical base 
sequence. This structure of quadruplets of base sequences 
and the corresponding test sequences allowed us to test 
the same words in the grammatical and ungrammatical 

base-sequence conditions. For simplicity, we refer to the 
grammatical base-sequence condition as the transposed-
word condition, and the ungrammatical base-sequence 
condition as the control condition, which represent the 
two levels of base-sequence grammaticality. This experi-
mental design notably allowed us to control for the posi-
tion in which the sequence becomes ungrammatical, as 
well as the nature of the grammatical violation in the 
transposed-word and control conditions.

Following the above constraints, we constructed 160 
ungrammatical test sequences, each containing five 
words. These ungrammatical test sequences were con-
structed from 80 grammatically correct base sequences 
(i.e., syntactically correct sentences in French) and 80 
ungrammatical base sequences (see Table 1). The 
words in all of these sequences were 1 to 11 letters 
long with an average length of 4.95 letters and an aver-
age frequency of 3,575 occurrences per million (New, 
Pallier, Brysbaert, & Ferrand, 2004), which is equivalent 
to 6.55 Zipf (van Heuven, Mandera, Keuleers, & 
Brysbaert, 2014). Grammaticality of the base sequence 
was the only manipulation, giving rise to the two types 
of ungrammatical test sequence: transposed word (derived 
from a grammatically correct base sequence) and control 
(derived from an ungrammatical base sequence). For the 
purposes of the grammaticality judgment task, the experi-
ment included an equal number of grammatically correct 
sentences. These were constructed to have the same 
grammatical structures as the grammatically correct base 
sequences. To avoid repetition of sequences containing 
the same words (e.g., “Ton petit avait chat faim,” “Ton 

Table 1. Construction of the Critical Ungrammatical Test Sequences Using 
French Examples Taken From the Experiments and Providing English Examples 
for Convenience

Sequence
Example from the  

experiments (French)
Example used to illustrate 

the design (English)

Base  
 Grammatical Ton petit chat avait faim.

Cette grande tasse est cassée.
The white cat was big.
The black dog ran slowly.

 Ungrammatical Ton petit chat avait cassée.
Cette grande tasse est faim.

The white cat was slowly.
The black dog ran big.

Test  
 Transposed word Ton petit avait chat faim.

Cette grande est tasse cassée.
The white was cat big.
The black ran dog slowly.

 Control Ton petit avait chat cassée.
Cette grande est tasse faim.

The white was cat slowly.
The black ran dog big.

Note: Examples illustrating how the critical ungrammatical test sequences used in the 
experiments (French) were constructed from quadruplets of base sequences of five words 
that could form a correct sentence (grammatical) or not (ungrammatical). The point at which 
the sequence becomes ungrammatical is indicated by an underscore (not present in the 
experiments). This was either the third or the fourth word in the sequence and was the same 
in the transposed-word and control conditions. The English examples used in the main text are 
provided for convenience. They are not translations of the French examples.

1926 Mirault et al.

1,200

1,250

1,300

1,350

1,400

1,450

1,500

1,550

1,600

Re
sp

on
se

 T
im

e 
(m

s)

Laboratory Experiment

2

4

6

8

10

12

14

16

18

Er
ro

r R
at

e 
(%

)

TW Control Grammatically
Correct

TW Control Grammatically
Correct

1,400

1,450

1,500

1,550

1,600

1,650

1,700

1,750

1,800

1,850
Re

sp
on

se
 T

im
e 

(m
s)

2

4

6

8

10

12

14

Er
ro

r R
at

e 
(%

)

Online Experiment

TW Control Grammatically
Correct

TW Control Grammatically
Correct

Fig. 1. Mean response time (left) and error rate (right) for the transposed-word (TW) and control 
ungrammatical sequences in the laboratory experiment (top) and the online experiment (bottom). 
Means for the grammatically correct sentences are given for comparison. Error bars show within-
participants 95% confidence intervals.

Task: is the new sentence 
grammatically correct? Task: tell if the sentence is 

grammatical or not


Observation: if the sentence is 
word-transposed from original 
sentence, it is less recognizable  
(high error)



LMs Can Understand Perturbed Language
Topic 2: Attention - Question 2: Position
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Abstract

Do state-of-the-art natural language under-
standing models care about word order? Not
always! We found 75% to 90% of the correct
predictions of BERT-based classifiers, trained
on many GLUE tasks, remain constant after in-
put words are randomly shuffled. Although
BERT embeddings are famously contextual,
the contribution of each individual word to
classification is almost unchanged even after
its surrounding words are shuffled. BERT-
based models exploit superficial cues (e.g. the
sentiment of keywords in sentiment analysis;
or the word-wise similarity between sequence-
pair inputs in natural language inference) to
make correct decisions when tokens are ran-
domly shuffled. Encouraging models to cap-
ture word order information improves the per-
formance on most GLUE tasks and SQuAD
2.0. Our work suggests that many GLUE tasks
are not challenging machines to understand the
meaning of a sentence.

1 Introduction

Machine learning (ML) models recently achieved
excellent performance on state-of-the-art bench-
marks for evaluating natural language understand-
ing (NLU). In July 2019, RoBERTa (Liu et al.,
2019) was the first to surpass a human baseline
on GLUE (Wang et al., 2019). Since then, 13
more methods have also outperformed humans on
the GLUE leaderboard. Notably, at least 8 out of
the 14 solutions are based on BERT (Devlin et al.,
2019)—a transformer architecture that learns repre-
sentations via a bidirectional encoder. Given their
superhuman GLUE-scores, how do BERT-based
models solve NLU tasks? How do their NLU capa-
bility differs from that of humans?

We shed light into these important questions by
examining model sensitivity to the order of words.
Word order is one of the key characteristics of a

Q1 Does marijuana cause cancer?

Q2 How can smoking marijuana give you lung cancer?

(a) Prediction: “duplicate” 0.96

Q1 Does marijuana cause cancer?

Q20 you smoking cancer How marijuana lung can give?

(b) Prediction: “duplicate” 0.98

Q1 Does marijuana cause cancer?

Q200 lung can give marijuana smoking How you cancer?

(c) Prediction: “duplicate” 0.99

Q1 Does marijuana cause cancer?

Q10 Does cancer cause marijuana?

(d) Prediction: “duplicate” 0.77

Figure 1: A RoBERTa-based model achieving a
91.12% accuracy on QQP, here, correctly labeled a
pair of Quora questions “duplicate” (a). Interestingly,
the predictions remain unchanged when all words in
question Q2 is randomly shuffled (b–c). QQP models
also often incorrectly label a real sentence and its shuf-
fled version to be “duplicate” (d). We found evidence
that GLUE models rely heavily on words to make deci-
sions e.g. here, “marijuana” and “cancer” (more impor-
tant words are highlighted by LIME). Also, there ex-
ist self-attention matrices tasked explicitly with extract-
ing word-correspondence between two input sentences
regardless of the position of those words. Here, the
top-3 pairs of words assigned the highest self-attention
weights at (layer 0, head 7) are inside red, green, and
blue rectangles, respectively.

sequence and is tightly constrained by many lin-
guistic factors including syntactic structures, sub-
categorization, and discourse (Elman, 1990). Thus,
arranging a set of words in a correct order is consid-
ered a key problem in language modeling (Hasler
et al., 2017; Zhang and Clark, 2015).

Therefore, a natural question is: Do BERT-
based models trained on GLUE care about the
order of words in a sentence? Lin et al. (2019)
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Pham, Thang, et al. "Out of Order: How important is the sequential order of words in a sentence in Natural Language Understanding tasks?." Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. 2021.

Task (a) Perf. on dev-r (b) Performance on dev-s (c) Word-Order Sensitivity (d) StructBERT improvements

Models Baseline 2-noun swap 1-gram 2-gram 3-gram 1-gram 2-gram 3-gram BERTbase BERTlarge RoBERTa

CoLA 100 50 71.75 50.69 53.98 56.36 0.99 0.92 0.87 +4.9 +4.8 +1.4
(0.93) (0.91) (0.95) (0.94) (0.92)

RTE 100 50 85.86 75.69 81.89 85.18 0.49 0.36 0.30 N/A +13.0 –0.9
(0.81) (0.81) (0.80) (0.80) (0.79)

QQP 100 50 86.90 83.19 88.02 89.04 0.34 0.24 0.22 +0.7 +1.2 +0.5
(0.98) (0.96) (0.96) (0.96) (0.96)

MRPC 100 50 96.51 83.89 87.1 89.38 0.32 0.26 0.21 N/A +3.9 +1.7
(0.91) (0.91) (0.89) (0.90) (0.90)

SST-2 100 50 97.78 84.04 88.35 90.56 0.32 0.23 0.19 +0.2 +0.3 +0.4
(0.99) (0.98) (0.96) (0.97) (0.97)

QNLI 100 50 94.31 89.42 93.85 95.32 0.21 0.12 0.09 N/A +3.0 +0.3
(0.98) (0.97) (0.96) (0.97) (0.98)

STS-B 89.67 N/A 88.93 87.80 88.66 88.95 N/A N/A N/A N/A N/A N/A

Table 2: All results (a–c) are reported on the GLUE dev-r sets i.e. 100% accuracy (a). Shuffling n-grams caused
the accuracy to drop (b) the largest for CoLA and the least for QNLI. Each row is computed by averaging the
results of 3 BERT-based models and 10 random shuffles. From top to bottom, the Word-Order Sensitivity (WOS)
is sorted descendingly (c) and is consistent across three types of n-grams i.e. WOS scores decrease from top down
and from left to right. In contrast, the StructBERT results (d), taken from Table 1 and 4 in Wang et al. 2020, showed
inconsistent improvements across different tasks. STS-B results are in scaled Spearman correlation. In addition to
small accuracy drops, the mean confidence scores of all classifiers—reported in parentheses e.g. “(0.93)”—also
changed marginally after words are shuffled (a vs. b).

3.4.1 SST-2: Salient words are highly
predictive of sentence labels

As 84.04% of the SST-2 correct predictions did not
change after word-shuffling (Table 2b), a common
hypothesis is that the models might rely heavily on
a few key words to classify an entire sentence.

S the film ’s performances are thrilling . 1.00
S1 the film thrilling performances are ’s . 1.00
S2 ’s thrilling film are performances the . 1.00
S3 ’s thrilling are the performances film . 1.00

Figure 3: An original SST-2 dev-set example (S) and
its three shuffled versions (S1 to S3) were all correctly
labeled “positive” by a RoBERTa-based classifier with
high confidence scores (right column).

Experiments To test this hypothesis, we took
all SST-2 dev-r examples whose all 5 randomly
shuffled versions were all correctly labeled by a
RoBERTa-based classifier (i.e. this “5/5” subset
is ⇠65% of the dev-set). We used LIME to pro-
duce a heatmap of the importance of words in each
example.

We identified the polarity of each top-1 most
important word (i.e. the highest LIME-attribution
score) per example by looking it up in the Opinion

Lexicon (Hu and Liu, 2004) of 2,006 positive and
4,783 negative words. ⇠57% of these top-1 words
were found in the dictionary and labeled either
“positive” or “negative” (see Table A3).

Results We found that if the top-1 word has a
positive meaning, then there is a 100% probability
that the sentence’s label is “positive”. For exam-
ple, the word “thrilling” in a movie review indi-
cates a “positive” sentence (see Fig. 3). Similarly,
the conditional probability of a sentence being la-
beled “negative” given a negative top-1 word is
94.4%. That is, given this statistics, the SST-2 la-
bel distribution and model accuracy, at least 60%
of the SST-2 dev-set examples can be correctly
predicted from only a single top-1 salient word.

We also reached similar conclusions when exper-
imenting with ALBERT classifiers and the Senti-
Words dictionary (Gatti et al., 2015) (see Table A3).

3.4.2 Self-attention layers matching similar
words in both the question and the
answer

For sequence-pair tasks, e.g. QNLI, how can mod-
els correctly predict “entailment” when the ques-
tion words are randomly shuffled (Fig. 4; Q1) or
when the question syntax is correct but its meaning
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QNLI sentence-pair inputs and their LIME attributions (negative -1, neutral 0, positive +1) Confidence
score

Q How long did Phillips manage the Apollo missions? 1.00
A Mueller agreed, and Phillips managed Apollo from January 1964, until it achieved the first manned

landing in July 1969, after which he returned to Air Force duty.

Q1 Apollo the Phillips How missions long did manage? 0.96
A Mueller agreed, and Phillips managed Apollo from January 1964, until it achieved the first manned

landing in July 1969, after which he returned to Air Force duty.

Q2 Phillips long manage How missions the Apollo did? 0.97
A Mueller agreed, and Phillips managed Apollo from January 1964, until it achieved the first manned

landing in July 1969, after which he returned to Air Force duty.

Qs How long did Apollo manage the Phillips missions? 0.99
A Mueller agreed, and Phillips managed Apollo from January 1964, until it achieved the first manned

landing in July 1969, after which he returned to Air Force duty.

Figure 4: A RoBERTa-based model’s correct prediction of “entailment” on the original input pair (Q, A) remains
unchanged when the question is randomly shuffled (Q1 & Q2) or when two random nouns in the question are
swapped (Qs). The salient words in the questions e.g. manage and missions remain similarly important after their
context has been shuffled. Also, the classifier harnessed self-attention to detect the correspondence between similar
words that appear in both the question and the answer e.g. manage (Q) and managed (A). That is, the top-3 pairs
of words that were assigned the largest question-to-answer weights in a self-attention matrix (layer 0, head 7) are
inside in the red, green, and blue rectangles.

changes entirely (Fig. 4; Qs). We hypothesize that
inside the model, there might be a self-attention
(SA) layer that extracts pairs of similar words that
appear in both the question and the answer (e.g.
“manage” vs. “managed” in Fig. 4).
Experiments To test this hypothesis, we analyzed
the 5,000 QNLI dev-r examples (Table A4) of
RoBERTa-based classifiers trained on QNLI. For
each example, we identified one SA matrix (among
all 144 as the base model has 12 layers & 12 heads
per layer) that assigns the highest weights to pairs
of similar words between the question and the an-
swer, i.e. excluding intra-question and intra-answer
attention weights (see the procedure in Sec. A).
Results First, in ⇠58% of the examples, we found
at least three pairs of words that match (i.e. the sum
Levenshtein character-level edit-distance for all 3
pairs is  4). Second, we found, in total, 15 SA
heads (out of the 144) which are explicitly tasked
with capturing such question-to-answer word cor-
respondence, regardless of word order (see Fig. 4).

Remarkably, 87% of the work of matching
similar words that appear in both the QNLI
question and the answer was handled by only
3 self-attention heads at (layer, head) of (0,7),
(1,9), and (2,6).

We found consistent results when repeating the
same analysis for other three sequence-pair tasks.
That is, interestingly, the three SA heads at ex-
actly the same location of (0, 7), (1, 9), and (2, 6)

account for 76%, 89%, and 83% of the “word-
matching” task on QQP, RTE, and MRPC, re-
spectively. This coincidence is likely due to the
fact that these classifiers were finetuned for differ-
ent downstream tasks starting from the same pre-
trained RoBERTa encoder. See Figs. 1, 4, A3–A4
for qualitative examples of these three tasks.

How important are the 15 word-matching at-
tention heads to QNLI model performance?
We found that zero-ing out 15 random heads had
almost no effect to correctly-classified predictions–
i.e. accuracy dropped marginally (�1% to �3%,
Table 3) across different groups of examples. How-
ever, ablating the 15 word-matching heads caused
the performance to drop substantially i.e. (a) by
9.6% on the 1,453 “positive” examples identified
in Sec. A; (b) by 22.1% on a set of 2,906 random,
examples including both “positive” and “negative”
examples (at 50/50 ratio); and (c) by 24.5% on
the entire QNLI 5,000-example dev-r set. That
is, the 15 SA heads that learned to detect sim-
ilar words played an important role in solv-
ing QNLI, i.e. enabling at least ⇠50% of the
correct predictions (Table 3d; accuracy dropped
from 100% to 75.54% when the random chance is
50%). In sum, we found overlap between words
in the question and answer of QNLI examples and
strong evidence that QNLI models harnessed self-
attention to exploit such overlap to make correct
decisions in spite of a random word-order.
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In-Distribution Features under Length-
Generalization

Topic 2: Attention - Question 2: Position

blue dots: normal features


colored lines: token features of in super-
long context under length generalization

Han, Chi, et al. "Computation Mechanism Behind LLM Position Generalization" arXiv preprint arXiv:2503.13305 (2025)



LM Attention Decomposes Position and Semantics
Topic 2: Attention - Question 2: Position

(a) logits with fake distances

fake distance d

key vectors kj

(b) approximated with vector addition

W′ dj = w(d, qi, kj)

real logit = w(i − j, qi, kj) fake logit matrix

fake-distance logits

key-axis 
component

distance-axis 
component summation

(c) more examplesto isolate the effect of vectors  and their distance , let us use a 
“fake” distance  instead of 

qi, kj i − j
d i − j Han, Chi, et al. "Computation Mechanism Behind LLM Position Generalization" arXiv preprint arXiv:2503.13305 (2025)
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An Intriguing Learned Feature Pattern
Topic 2: Attention - Question 2: Position

attention 
dim id

std

norm

total rotation degree 
over maximum length

1. long-range 
rotating dimensions

2. static 
dimensions

3. high-frequency, 
residual terms, local

(a) rotating pattern graph (b) more examples

pattern in RoPE:

certain dimensions with slower “rotating speeds” have a dominant norm

Han, Chi, et al. "Computation Mechanism Behind LLM Position Generalization" arXiv preprint arXiv:2503.13305 (2025)



The Pattern Proves to Disentangle Attention
Topic 2: Attention - Question 2: Position

(a) Effects of text transposition on LLM
perplexity. x-axis controls the ratio of
tokens perturbed, and y-axis controls
the maximum distance of shuffled token
pairs.

(b) Effects of feature transposition on
LLM perplexity. x-axis controls ratio of
tokens with position indices perturbed,
and y-axis controls the maximum value
position offset.

(c) Effects of position encoding manipu-
lation on LLM perplexity. x-axis controls
ratio of tokens with position indices per-
turbed, and y-axis controls the maximum
value position offset.

Figure 5: Evaluating the impact of position information perturbation on LLMs’ perplexity on ArXiv documents.
With the vanilla perplexity being 3.688, our results show that shuffling text order in inputs and altering positional
encodings in self-attention layers have limited effects on model perplexity and attention outputs.

2. (Dimensions that are mostly static) The total
rotation angle ωmax

r = ωrLpre-train is usually
small if the initial angle is close to ε.

More similar patterns can be found in Fig 4(b)
and Appendix D.

We theoretically demonstrate how these patterns
account for the previous entanglement in the sense
that the contributions of slow dominating tuple di-
mensions to logits disentangle the positional and
semantic components. Other tuple dimensions,
however, contribute to relatively smaller variations
in the logits. We have the following asymptotic
disentanglement of the logit function (with formal
statements and proof in Appendix C):
Theorem 1. There exists functions f(q, i →
j), g(q,k) that so that the effect of i → j and k
can be asymptotically disentangled as:

w(i→j, q,k) = f(q, i→j)+g(q,k)+o(R) (5)

, where

R = max (Range(f),Range(g))

stands for the larger one of extreme range of f and
g as i, j,k vary

. Here, f and g are only related to the positional
and semantic relation between tokens. The logit
function is approximated as the sum of two func-
tions f, g, with a diminishing term compared to the
function range of f, g. This provides computational
explanations for the observations in the previous
two sections. Not only are these functions existen-
tial, but the proof in Appendix C provides explicit-
form solutions for f, g, which obtains a 0.959 lin-
ear correlation with the original logits. This further
validates the observations in Section 3.1 and 3.2.

Operation Qasper Accuracy

0.5 0.1 0.05 0.01 0.001

Original 42.53

Text Order 37.39 41.44 42.34 42.37 42.53
Feature Order 35.11 41.15 41.98 42.33 42.56
Position Encod-
ing

37.19 42.44 42.42 42.74 42.64

Table 1: Effect of different levels of positional infor-
mation perturbation on the Qasper Question-Answering
dataset. Up to 5% of the tokens can be transposed or
applied with perturbed position encoding (within token
distance ±5), while only resulting in a marginal effect
on model accuracy.

4 Position Generalization of LLMs

Taking insights of findings in Sec 3, this section
explains how LLMs achieve position generaliza-
tion towards perturbed text positions and unseen
lengths. These phenomena reflect the aforemen-
tioned computational mechanism of disentangling
position and semantics in attention: positional rele-
vance is not tightly bonded with semantic informa-
tion in attention inference. Instead, they contribute
linearly independently to attention logits. In the
following sections, we will empirically examine
various forms of position generalization on the rep-
resentation level.

4.1 Tolerance to Position Perturbations
Why can LLMs (like humans) read the language
in shuffled word and sentence order? In light of
the analysis in Sec 3, the positional information
does not tightly bond with semantic relation but

Message: LMs don’t bond semantic feature  with their position relations ! kj i − j
Han, Chi, et al. "Computation Mechanism Behind LLM Position Generalization" arXiv preprint arXiv:2503.13305 (2025)
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LMs Are Stable on Disentangled Position

Perplexity if we shuffle  ratio of words 
within max range 

γ
D

Perplexity if we shuffle  ratio of features 
within max range 

γ
D
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LMs Are Stable on Disentangled Position

(a) Effects of text transposition on LLM
perplexity. x-axis controls the ratio of
tokens perturbed, and y-axis controls
the maximum distance of shuffled token
pairs.

(b) Effects of feature transposition on
LLM perplexity. x-axis controls ratio of
tokens with position indices perturbed,
and y-axis controls the maximum value
position offset.

(c) Effects of position encoding manipu-
lation on LLM perplexity. x-axis controls
ratio of tokens with position indices per-
turbed, and y-axis controls the maximum
value position offset.

Figure 5: Evaluating the impact of position information perturbation on LLMs’ perplexity on ArXiv documents.
With the vanilla perplexity being 3.688, our results show that shuffling text order in inputs and altering positional
encodings in self-attention layers have limited effects on model perplexity and attention outputs.

2. (Dimensions that are mostly static) The total
rotation angle ωmax

r = ωrLpre-train is usually
small if the initial angle is close to ε.

More similar patterns can be found in Fig 4(b)
and Appendix D.

We theoretically demonstrate how these patterns
account for the previous entanglement in the sense
that the contributions of slow dominating tuple di-
mensions to logits disentangle the positional and
semantic components. Other tuple dimensions,
however, contribute to relatively smaller variations
in the logits. We have the following asymptotic
disentanglement of the logit function (with formal
statements and proof in Appendix C):
Theorem 1. There exists functions f(q, i →
j), g(q,k) that so that the effect of i → j and k
can be asymptotically disentangled as:

w(i→j, q,k) = f(q, i→j)+g(q,k)+o(R) (5)

, where

R = max (Range(f),Range(g))

stands for the larger one of extreme range of f and
g as i, j,k vary

. Here, f and g are only related to the positional
and semantic relation between tokens. The logit
function is approximated as the sum of two func-
tions f, g, with a diminishing term compared to the
function range of f, g. This provides computational
explanations for the observations in the previous
two sections. Not only are these functions existen-
tial, but the proof in Appendix C provides explicit-
form solutions for f, g, which obtains a 0.959 lin-
ear correlation with the original logits. This further
validates the observations in Section 3.1 and 3.2.

Operation Qasper Accuracy

0.5 0.1 0.05 0.01 0.001

Original 42.53

Text Order 37.39 41.44 42.34 42.37 42.53
Feature Order 35.11 41.15 41.98 42.33 42.56
Position Encod-
ing

37.19 42.44 42.42 42.74 42.64

Table 1: Effect of different levels of positional infor-
mation perturbation on the Qasper Question-Answering
dataset. Up to 5% of the tokens can be transposed or
applied with perturbed position encoding (within token
distance ±5), while only resulting in a marginal effect
on model accuracy.

4 Position Generalization of LLMs

Taking insights of findings in Sec 3, this section
explains how LLMs achieve position generaliza-
tion towards perturbed text positions and unseen
lengths. These phenomena reflect the aforemen-
tioned computational mechanism of disentangling
position and semantics in attention: positional rele-
vance is not tightly bonded with semantic informa-
tion in attention inference. Instead, they contribute
linearly independently to attention logits. In the
following sections, we will empirically examine
various forms of position generalization on the rep-
resentation level.

4.1 Tolerance to Position Perturbations
Why can LLMs (like humans) read the language
in shuffled word and sentence order? In light of
the analysis in Sec 3, the positional information
does not tightly bond with semantic relation but

QA Task accuracy if we shuffle  ratio of words or features within max range 5γ



Attention Also Explains In-Context Learning

Input: moving and important. 

Input: excruciatingly unfunny and pitifully unromantic.

Input: the plot is nothing but boilerplate clichés from start to finish.

…

Input: intelligent and moving

Output: Positive.

Output: Negative.

Output: Negative.


Output: ________

x y
demonstrative 
samples

test input

̂y =
∑i K(xi, xtest)yi

∑i K(xi, xtest)
K(xi, xtest)

(similarity kernel)

70%: “Positive”

Han, Chi, et al. "Explaining emergent in-context learning as kernel regression." arXiv preprint arXiv:2305.12766 (2023).
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In-context learning: completing tasks based on demonstrations



Attention Also Explains In-Context Learning
Input: moving and important. 

Input: excruciatingly unfunny and pitifully unromantic.

Input: the plot is nothing but boilerplate clichés from start to finish.

…

Input: intelligent and moving

Output: Positive.

Output: Negative.

Output: Negative.


Output: ________

x y
demonstrative 
samples

test input

̂y =
∑i K(xi, xtest)yi

∑i K(xi, xtest)
K(xi, xtest)

(similarity kernel)

70%: “Positive”

• The output  is sampled from a weighted average over example outputs  
(i.e., a kernel-regression)


• the weights are computed by a certain similarity metric  (i.e., a 
kernel)

̂y yi

K(xi, xtext)

Han, Chi, et al. "Explaining emergent in-context learning as kernel regression." arXiv preprint arXiv:2305.12766 (2023).
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The Kernel Originates from Pre-Training
Kernel regression (hypothesized ICL algorithm)

Topic 2: Attention - Question 3: Contextual Knowledge
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The Kernel Originates from Pre-Training

The kernel (similarity metric)

A representation of sample input 
 for predicting the next tokenx

A matrix about the pre-
training objective

Kernel regression (hypothesized ICL algorithm)

Topic 2: Attention - Question 3: Contextual Knowledge
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The Attention Applies to  As Kernel Regressionyi
layer 1 
layer 2 
layer 3 
layer 4 
layer 5 
layer 6 
layer 7 
layer 8 
layer 9 
layer 10 
layer 11 
layer 12 
layer 13 
layer 14 
layer 15 
layer 16 
layer 17 
layer 18 
layer 19 
layer 20 
layer 21 
layer 22 
layer 23 
layer 24 
layer 25 
layer 26 
layer 27 
layer 28

head 1 
head 2 
head 3 
… 
head 16

x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 xn yn xtest

sample 1 sample 2 sample 3 sample 4 sample 5 sample n
x6 y6
sample 6

…
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The Explanation Aligns With the Model Output

Layer Index

H
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d 
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x

Certain attention heads can reconstruct the LLM ICL output with the 
explanation.

Topic 2: Attention - Question 3: Contextual Knowledge
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The Attention

Preprint. Under review.

(a) Predicting argmaxo P (o|xi) with key vectors. (b) Predicting yi with value vectors.

Figure 5: Key and value vectors encode label and LLM prediction information at high-attention
position. Here x-axis (0→27) is layer number, y-axis denotes relative position to the high-attention
position within each demonstration, and z-axis is accuracy. Each sphere is an attention head. The
curve shows average accuracy within each layer.

Method sst2 mnli
rotten- tweet_eval tweet_eval tweet_eval

tomatoes (hate) (irony) (offensive)

task-specific best head 0.864 0.628 0.836 0.768 0.732 0.768
overall best head 0.817 0.622 0.714 0.740 0.642 0.740

Table 1: Accuracy of reconstructing LLM ICL outputs with kernel regression.

Method sst2 mnli
rotten- tweet_eval tweet_eval tweet_eval

tomatoes (hate) (irony) (offensive)

GPT-J-6B ICL 0.805 0.383 0.671 0.539 0.519 0.542

all-MiniLM-L6-v2 0.503 0.321 0.478 0.548 0.491 0.588
bert-base-nli-mean-tokens KR 0.523 0.325 0.502 0.545 0.479 0.597
task-specific best head KR 0.789 0.974 0.692 0.560 0.584 0.560
overall best head KR 0.766 0.808 0.648 0.462 0.446 0.462

Table 2: Performance of explicit kernel regression (KR) and LLM ICL on downstream tasks.

with the best average reconstruction accuracy. We see 70%→80% accuracy on tasks except mnli. In
Table 2 we see that kernel regression on head features achieves similar or superior performance than
kernel regression on sentence encoders such as all-MiniLM-L6-v2 2 and bert-base-nli-mean-tokens 3,
and even ICL itself, proving the validity of such kernels.

6 CONCLUSIONS AND FUTURE WORK

In conclusion, our work provides a novel theoretical view to understand the intriguing in-context
learning (ICL) capabilities of Transformer-based large language models (LLMs). We propose that
LLMs can simulate kernel regression algorithms when dealing with in-context examples. Our
empirical investigations into the in-context behaviors of LLMs reveal that the model’s attention and
hidden features during ICL are congruent with the behaviors of kernel regression. Furthermore,
our theory also explains several observable phenomena in the field of ICL: why the retrieval of
demonstrations similar to the test sample can enhance performance, the sensitivity of ICL to output
formats, and the improvements in ICL accuracy when selecting in-distribution and representative
samples. There are still remaining challenges in this topic, such as understanding the effect of sample
orderings and the robustness to perturbed labels. These questions, along with understanding other
perspectives of LLMs, are exciting questions for future research.

2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

3
https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens
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KR based on baseline sentence embeddings models

The KR explanation explained most tasks well (except for MNLI)
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Room for Future Research

• Attention module’s role in syntax and word order processing


• More precise categorization of attention’s role in demonstration learning


• Explaining and addressing and lost-in-the-middle and position bias 
problem


• Extension to other model architectures

Topic 2: Attention



Summary
Towards a  Physiology of Language Models: Elucidating and Utilizing Hidden Language Representation

• Topic 1: What Is the Function of Word Embeddings

• Topic 2: Attention, Position and Context


• Q1: How LMs Deal with Context Length

• Q2: How LMs Process Position Information

• Q3: How LMs Comprehend Contextual Knowledge
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(a) Effects of text transposition on LLM
perplexity. x-axis controls the ratio of
tokens perturbed, and y-axis controls
the maximum distance of shuffled token
pairs.

(b) Effects of feature transposition on
LLM perplexity. x-axis controls ratio of
tokens with position indices perturbed,
and y-axis controls the maximum value
position offset.

(c) Effects of position encoding manipu-
lation on LLM perplexity. x-axis controls
ratio of tokens with position indices per-
turbed, and y-axis controls the maximum
value position offset.

Figure 5: Evaluating the impact of position information perturbation on LLMs’ perplexity on ArXiv documents.
With the vanilla perplexity being 3.688, our results show that shuffling text order in inputs and altering positional
encodings in self-attention layers have limited effects on model perplexity and attention outputs.

2. (Dimensions that are mostly static) The total
rotation angle ωmax

r = ωrLpre-train is usually
small if the initial angle is close to ε.

More similar patterns can be found in Fig 4(b)
and Appendix D.

We theoretically demonstrate how these patterns
account for the previous entanglement in the sense
that the contributions of slow dominating tuple di-
mensions to logits disentangle the positional and
semantic components. Other tuple dimensions,
however, contribute to relatively smaller variations
in the logits. We have the following asymptotic
disentanglement of the logit function (with formal
statements and proof in Appendix C):
Theorem 1. There exists functions f(q, i →
j), g(q,k) that so that the effect of i → j and k
can be asymptotically disentangled as:

w(i→j, q,k) = f(q, i→j)+g(q,k)+o(R) (5)

, where

R = max (Range(f),Range(g))

stands for the larger one of extreme range of f and
g as i, j,k vary

. Here, f and g are only related to the positional
and semantic relation between tokens. The logit
function is approximated as the sum of two func-
tions f, g, with a diminishing term compared to the
function range of f, g. This provides computational
explanations for the observations in the previous
two sections. Not only are these functions existen-
tial, but the proof in Appendix C provides explicit-
form solutions for f, g, which obtains a 0.959 lin-
ear correlation with the original logits. This further
validates the observations in Section 3.1 and 3.2.

Operation Qasper Accuracy

0.5 0.1 0.05 0.01 0.001

Original 42.53

Text Order 37.39 41.44 42.34 42.37 42.53
Feature Order 35.11 41.15 41.98 42.33 42.56
Position Encod-
ing

37.19 42.44 42.42 42.74 42.64

Table 1: Effect of different levels of positional infor-
mation perturbation on the Qasper Question-Answering
dataset. Up to 5% of the tokens can be transposed or
applied with perturbed position encoding (within token
distance ±5), while only resulting in a marginal effect
on model accuracy.

4 Position Generalization of LLMs

Taking insights of findings in Sec 3, this section
explains how LLMs achieve position generaliza-
tion towards perturbed text positions and unseen
lengths. These phenomena reflect the aforemen-
tioned computational mechanism of disentangling
position and semantics in attention: positional rele-
vance is not tightly bonded with semantic informa-
tion in attention inference. Instead, they contribute
linearly independently to attention logits. In the
following sections, we will empirically examine
various forms of position generalization on the rep-
resentation level.

4.1 Tolerance to Position Perturbations
Why can LLMs (like humans) read the language
in shuffled word and sentence order? In light of
the analysis in Sec 3, the positional information
does not tightly bond with semantic relation but
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