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(LMs: abbreviation for “language models”)

We Increasingly Rely on LMs

vet we still do not fully understand them.
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“Can you solve this problem for me? It is too hard for me”

(Are they intelligent enough to solve it, or do
they pretend to be doing so?)

“Could you tell me of all the kings who have ruled over Europe?”

(do they know all these knowledge, or are they
sometimes guessing?)

“Why did you perform bad on this task?”

(What are the causes of their drawbacks?)
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Can We Systematically Describe How LMs

Can we systematically
predict and enhance their

0 0 intelligence?

] ~

What causes their
How do LMs reason and shortcomings, and how
utilize knowledge? can we address them?



Why Do We Need A New Science?

New sciences often emerge as a result of scaling up old sciences

Machine Learning —Deep Learning —— Language Models

PAC theory, Gradient Descent,
optimization, Neural Tangent A Sciences of LMs
Kernel, ...

image credits: https://www.twinkl.com/parenting-wiki/particle, https://www.google.com/url?sa=i&url=https://simple.wik
mechanics/&psig=A0vVaw1hA8U-JFcvxC67WonlgY8A&ust=1729744191924000
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Spectrum of Sciences of LMs

Model-Oriented Behavior-Oriented

Physics of LMs

(laws at population level)
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Scientific Principles for a Science of LMs

* Generality across model sizes, architectures, training details, and
randomness.

 Simplicity to avoid meta-overfitting
* Interpretability with consistent mechanistic insight
* Predictive power on new phenomena

* Deriving solutions for LM-related challenges

In practice, achieving all these principles is challenging, but the more we
achieve, the better!



Tutorial Outline

 Part 1 (Ethology): How Do LMs Behave?

* Syntax: How do LMs work with syntax
* Knowledge: Where is knowledge stored

* Reasoning: How is reasoning conducted

 Part 2 (Physiology): What Roles Do Components Play?

* Attention: Attention, position and context

* Embeddings: What is the function of word embeddings

 Part 3 (Physics): Rules and Laws of LMs

 Scaling: How performance scales

* Impossibilities: What LMs cannot do fundamentally
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Model-Data-Task Triangular: A Roadmap

Model
The roadmap in this LM architecture
tutorial is far from gesian 2.1 - attention
comprehensive! “Physiology”

s 2.2 - embedding

3.1 scaling laws

“Physics”

1.1 - syntax (language structure
LM theory 4 fanauag )

.2 impossibility 1.2 - knowledge (L) & world)
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Prerequisites: Language Modeling

next layer
One Layer output feﬁlture
Large Language Models are “Impressive”
\———v—' T Multi-Layer
_ _ Perceptron (MLP)
InpUt. [xl’ Xyy o0t xn] Output: X1
Language
Model: Pyl 1 +.x,) &)

next-word probabillity

Language Modeling A Transformer-Based Architecture



How Do LMs Behave?

Topics:
 Syntax: How do LMs work with syntax
 Knowledge: Where Is knowledge stored

 Reasoning: How is reasoning conducted



How Do LMs Work on Syntax?



LMs Are Robust to “Unnatural Language”

Task: natural language Premise Hypothesis i;i)(lilcted
inference

Boats in daily use lie within  There are boats close E
feet of the fashionable bars to bars and restaurants.
and restaurants.

restaurants and use feet of bars restaurants are E
fashionable lie the in Boats There and to close
within bars daily . boats .

He and his associates He and his associates C €<

normally ordered text weren’t operating at the were operating at the
level of metaphor. level of the metaphor.

robust
answer

| his at and metaphor the his the and metaphor C
texts with shuffled words  of were He operating asso- level the were He at as-
ciates n’t level . soclates operating of .

Sinha, Koustuy, et al. "UnNatural Language Inference." Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). 2021.



LMs Are Robust to “Unnatural Language”

Task: paraphrase Task: sentiment classification

. 5 —

(a) Prediction: “duplicate” 0.96 Sl the film thrllhng p@ffOI'HlﬂIlC@S are ’s .| 1.00
Qu [Does| SRS cause (cancer? So | ’s thrilling film are performances the . | 1.00
Qo you smoking [GOREER [ ow| [ARINERA) lung can give? S3 |’s thrilling are the performances film .| 1.00

(b) Prediction: “duplicate” 0.98

Task: entailment

QNLI sentence-pair inputs and their LIME attributions (2t neutral 0, positive +1) Corslci:i;lreence
Q |How long did Phillips managf:# the |Ap0110| missions? 100
A |Mueller agreed, and |Phillips| [managed| |Apollo| from January 1964, until it achieved the first manned
landing in July 1969, after which he returned to Air Force duty.
Q1 [|Apollo| the |Phillips| How missions long did manage? 0.96
A |Mueller agreed, and [Phillips| jmanaged| |Apollo| from January 1964, until it achieved the first manned
landing 1n July 1969, after which he returned to Air Force duty.

Pham, Thang, et al. "Out of Order: How important is the sequential order of words in a sentence in Natural Language Understanding tasks?." Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. 2021.



LMs Are Robust to “Unnatural Language”

* Different capabillities have different
sensitivity to syntax corruption

* In sentence acceptability,
naturally requires integrate
syntax

Qi1 [Does| marijuana cause [cancer?,

e or when the meaning IS Q2 lung can give marijuana smoking [How| you |cancer?|

reversed (A cause B V.S. B (¢) Prediction: “duplicate” 0.99
cause A) Q1 Does |marijuanal cause| [cancer?|

Q1 Does |cancer| cause| [marijuana?)

Pham, Thang, et al. "Out of Order: How important is the sequential order of words in a sentence in Natural Language Understanding tasks?." Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. 2021.
Huang, Kuan-Jung, and Adrian Staub. "The transposed-word effect does not require parallel word processing: Failure to notice transpositions with serial presentation of words." Psychonomic bulletin & review 30.1 (2023): 393-400.
Mirault, Jonathan, Joshua Snell, and Jonathan Grainger. "You that read wrong again! A transposed-word effect in grammaticality judgments.” Psychological Science 29.12 (2018): 1922-1929.



Part 1: Ethology - Topic 1: Syntax

Word Transposition Effect iIn Humans

Task: i1s the new sentence
grammatically correct?

The wh1te cat was blg |
The black dog ran slowly.

j‘ The Wh1te was cat b1g
The black ran dog slowly.

14 ¢

12 |

10 |

Error Rate (%)

(@)
|

(@)
|

Task: tell if the sentence is
grammatical or not

Observation: if the sentence is
word-transposed from original
sentence, it is less recognizable
(high error)

:
|

ontrol Grammatically
Correct

Mirault, Jonathan, Joshua Snell, and Jonathan Grainger. "You that read wrong again! A transposed-word effect in grammaticality judgments.” Psychological Science 29.12 (2018): 1922-1929.



Hidden Features Encode Local Syntax

Probing: predicting each word’s syntax within hidden features

93 = | 8

94 i 1|5

S5 = 10 10

S¢ =

M 1 1 T ]

X = 1 1 3 3 1 1 1 2

b6 —

b, — linearly encode .

b4 — 1

bg — 1

Allen-Zhu, Zeyuan, and Yuanzhi Li. "Physics of language models: Part 1, context-free grammar." arXiv preprint arXiv:2305.13673 (2023).



Hidden Features Encode Syntax-Parsing Features

18!
13 1511511511515/ 15 15 e 15 j-::S
12 11 Tb i § i § § 107 § N i § 1o§

—_— 1 :
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Corollary: GPT mimics

dynamic programming (DP)

x=1 2 3 3 1 3 3 1 2 1 2 2 1 1 1 1 2 1 1 3 1 2 1 1 3 3 1 1 1 1 1 2 2 1 ...

i

DP,(t,15) = DP(0, i;,13) DP(iy, iy, 10)

DP,(t,10) DP(i5,j, )

DP,(t, )

learns to
generate

from C?

DP,(j,a) = whether symbol a
can follow sequence x; ... x;

Probing: if hidden features can recover computational features useful for paring syntax

Allen-Zhu, Zeyuan, and Yuanzhi Li. "Physics of language models: Part 1, context-free grammar." arXiv preprint arXiv:2305.13673 (2023).



Part 1: Ethology - Topic 1: Syntax

Word Embeddings Encode Syntactic Roles

In a synthetic language, word embeddings are

In natural language, word embeddings grouped by syntactic roles

reflect a reflect their syntax roles

%0 Y%, %o %; ‘op ‘0; ‘20?2,

f 1.00
ew n)
most (o))
S c - 0.75
° .0
T &
93 0.50
e -
0 0 0.25
e
20 0.00
S £
5
that the " 3 —025
C Y=
o¢c
= 5 —0.50
L c
2 o
a each = C —0.75
evert 15 S
y —1.00

Allen-Zhu, Zeyuan, and Yuanzhi Li. "Physics of language models: Part 1, context-free grammar." arXiv preprint arXiv:2305.13673 (2023).
Andreas, Jacob, and Dan Klein. "How much do word embeddings encode about syntax?." Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). 2014.



Part 1: Ethology - Topic 1: Syntax

UNR;EE:III-II,,,,.....
08 8 oF SEE 3
Attention heads that
close parentheses
ONROLLE-
78 8 S 8EE &

Elhage, Nelson, et al. "A mathematical framework for transformer circuits." Transformer Circuits Thread 1.1 (2021): 12.

LMs Uses Attention to Utilize Syntax

Head O
0.20
rP . T *+t *r *+r *+r *r *+r *°r +r + - °r 1+ 1+~ 1 1 1 1 1
O — N N VO N N —
SCEF N RETREL c A
Mm oo o o I~ <+ O <+ O O o — 0.15
> = > = S = > \Y
THRTT L LL TIRTT LL
- 0.10
- 0.05
Head 1
IIIIIIIIIIIIII‘IIIII
O — N N vo N N N —
SCETF N RETREL =N
Mmoo o I~ <+ O <+ O O o =
> = > = S = > \Y
THRTT L LLI TIRTT L

Wang, Kevin Ro, et al. "Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 Small." The Eleventh International Conference on Learning Representations.

Zhang, Shizhuo Dylan, et al. "Can transformers learn to solve problems recursively?." arXiv preprint arXiv:2305.14699 (2023).



When

IO Mary
and

S1 John

S1+1 went

Heads that copy- ©
past nouns the

store

S2 John —P[D

gave
a

drink
END to

v
> Previous Token Head?
22 41 )

v

uplicate Token Head

0.1 3.0

v

LMs Uses Attention to Utilize Syntax

Legend

Key / Value

Query _.[Class of Heads}»Output

Layer.Head

nduction Heads

S I
(0.10) }'[ 55 69 (5.8 59)

{

S-Inhibition Heads
73 79 86 810

J*

“(Backup) Name Mover Heads”: copy-pasting nouns
“Duplicate Token Heads” and “Induction Heads”: detecting duplicate nouns
“S-Inhibition Heads”: suppresing attention on duplicate nouns

Elhage, Nelson, et al. "A mathematical framework for transformer circuits." Transformer Circuits Thread 1.1 (2021): 12.
Wang, Kevin Ro, et al. "Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 Small." The Eleventh International Conference on Learning Representations.
Zhang, Shizhuo Dylan, et al. "Can transformers learn to solve problems recursively?." arXiv preprint arXiv:2305.14699 (2023).
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Room for Future Efforts

Future work could:
» describe the processing in syntax in more details

e analyze other types of linguistic structures such as semantics,
sense, coreference and ambituity

* investigate If the syntax is directly contributing to the functions of
LMs, or encoded as a side effect from LM objective.



Where Is Knowledge Stored



Part 1: Ethology - Topic 2: Knowledge

Memory Storage in Human Brain

We Know Some Functions of Brain Regions

Neocortex: semantic memory
transfer (e.g., facts, Commonsense

» Thru

;' Amygdala: emotional implications
: (e.g., fear, PTSD) g+

Neocortex

image credit: https://www.brainline.org/article/how-ptsd-affec



Part 1: Ethology - Topic 2: Knowledge

Can We Analogize LMs with Brains?

and therefore, analogize LM parameters = brain neurons?

next layer

output feature
A

ne Layer

Multi-Layer
Perceptron (MLP)

A

[
o

Whité Matter

_—

Causal Self-Attention

By Bodysurfinyon - Own work, CC BY-SA 4.0, https://
® 06 0606 0 0 0 o commons.wikimedia.org/w/index.php?curid=125106144

One Transformer LM Brain and its 6-layers in neocortex



Part 1: Ethology - Topic 2: Knowledge

s: MLP ~ Knowled

Common Hypothesi ge dict

output feature h()mpm

-y
" N

0000

- down-projection weight X
knowledge value

0000

&

| ©OO00
S [ OO00

O

O [ ©OOO
1 QOO0

2
Q[ OO0

O
—
<

n.------- « INntermediate value &~
knowledge neuron

O L .
O up-projection weight ~
8 » knowledge lookup key

S -
-----

S

OO0 | LJ

intermediate <
feature i, .. .

o

OCO00 | L) 8| 0000

\‘ 0000 | D 3 | ©OC0
OO0 COCO | O

OO0 | )
OO00O | LJ
OO0 | LJ

Feeeo)

Geva, Mor, et al. "Transformer Feed-Forward Layers Are Key-Value Memories." Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing. 2021.

Dai, Damai, et al. "Knowledge Neurons in Pretrained Transformers." Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). 2022.

iInput feature hin .



Part 1: Ethology - Topic 2: Knowledge

Evidence Su

0000

v

-

pportlng MLP ~ Knowledge dict

—----n.

0000
0000
0000
0000
0000
0000
0000

YWOOO

Inserting output features can /inject
certain knowledge prediction

R

- - .-

% Manually activate neurons can also force

0. OO0

o

certain knowledge prediction

e ¢.g. Dublin is the capital and largest city of

OO0 | J

OO0 | LJ

OO0 | LJ

OO0 | LJ

OO00 | )

OO0 | LJ

y -

QOO0

0000

YOO COCO | O

Eneland — Ireland

» Certain neurons react to knowledge types

4

4

[ |
|
]

- N

e ¢.g., “part-of” types, related to TV shows

[1] Geva, Mor, et al. "Transformer Feed-Forward Layers Are Key-Value Memories." Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. 2021.
[2] Dai, Damai, et al. "Knowledge Neurons in Pretrained Transformers." Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. 2022.
[3] Meng, Kevin, et al. "Locating and editing factual associations in GPT." Advances in Neural Information Processing Systems 35 (2022): 17359-17372.

[4] Meng, Kevin, et al. "Mass-Editing Memory in a Transformer." The Eleventh International Conference on Learning Representations.



Part 1: Ethology - Topic 2: Knowledge

Knowledge Seems to Be Stored Messily

Expectation: semantic / logical related facts should share parameters
Why? intuitively, this leads to better semantic/logic-based generalization:

if x = vy, when P(x) 1, the LM can automatically P(y) 1

LM Parameters

= «Jordan speaks English”

ONONONONONONONONOV. &
OO 00O
OO0O0O0O0 7 _ S
Jordan’s = speaks-English” neurons
representation
. 00000 “Is-American” neurons
OO 00O
00000 ) | o
O0O00O0 -, “Jordan is American




Knowledge Seems to Be Stored Messily

Incompatible sentences postively align parameters

Qin, Jiaxin, et al. "Why Does New Knowledge Create Messy Ripple Effects in LLMs?." Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing. 2024.



Knowledge Seems to Be Stored Messily

Incompatible sentences postively align parameters

 Negation curse:
e X: Leonardo is from USA
* not X: Leonardo is not from USA

Qin, Jiaxin, et al. "Why Does New Knowledge Create Messy Ripple Effects in LLMs?." Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing. 2024.



Knowledge Seems to Be Stored Messily

Incompatible sentences postively align parameters

 Negation curse:
e X: Leonardo is from USA
* not X: Leonardo is not from USA

* Over-Ripple:
e X: Leonardo is from USA

» v: Leonardo speaks USA

Qin, Jiaxin, et al. "Why Does New Knowledge Create Messy Ripple Effects in LLMs?." Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing. 2024.



Knowledge Seems to Be Stored Messily

similar sentences with low parameter overlap

Qin, Jiaxin, et al. "Why Does New Knowledge Create Messy Ripple Effects in LLMs?." Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing. 2024.



Knowledge Seems to Be Stored Messily

similar sentences with low parameter overlap

* Cross-Lingual Barrier:
 Leonardo is from USA

o« 3EEpNZ KB EE (same meaning)

Qin, Jiaxin, et al. "Why Does New Knowledge Create Messy Ripple Effects in LLMs?." Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing. 2024.



Knowledge Seems to Be Stored Messily

similar sentences with low parameter overlap

* Cross-Lingual Barrier:
 Leonardo is from USA

o« 3EEpNZ KB EE (same meaning)

* Logical Distance Barrier:
* | eonardo is from USA

* The highest building in the capital of Leonardo’s homeland is
Washington Monument

Qin, Jiaxin, et al. "Why Does New Knowledge Create Messy Ripple Effects in LLMs?." Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing. 2024.



Part 1: Ethology - Topic 2: Knowledge
Curse of Reversals / Inverse-Searches

Training: After learning on data “A is B”.

v Forward inference: LMs can successfully answer “Ais[? ]" — “B”

X Inverse inference: they struggle to answer “[ ? | is B” — “A”

35 Bl Parent
s Child

Q: Who 1s Tom Cruise’s mother?
A: Mary Lee Pfeiffer

Accuracy (%)

Q: Who 1s Mary Lee Pfeiffer’s son?
A: Tom Cruise

L

gpt-3.5-turbo Llama-7b Llama-30b Llama-65b

Berglund, Lukas, et al. "The Reversal Curse: LLMs trained on “A is B” fail to learn “B is A”." The Twelfth International Conference on Learning Representations.
Allen-Zhu, Zeyuan, and Yuanzhi Li. "Physics of Language Models: Part 3.2, Knowledge Manipulation." In The Thirteenth International Conference on Learning Representations.



Room for Future Efforts

* |nvestigating if more specific and precise localization of knowledge neurons
Is possible (or are knowledge neurons distributed in nature)

* Revealing the relation between knowledge neuron localization and
knowledge editing.

* | ooking at the relation between knowledge and their semantically
equivalent expressions in LM processing

* |nvestigating other LM components’ roles in knowledge processing &
storage



How Is Reasoning Conducted
within LM




42
40

30

20

Points total

10

Trinh, Trieu H., et al. "Solving olympiad geometry without human demonstrations." Nature 625.7995 (2024): 476-482.

TOTAL

Gold

Silver

Bronze

Other

LMs’ Reasoning Ability

AlphaGeometry excel at olympiad-level
math problems

[28 pointsw

Human participant rank

Our system

chain-of-thought reasoning by LMs

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each Is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

Model Output

A. The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3+ 6 =9. The
answer is 9. «/

Wei, Jason, et al. "Chain-of-thought prompting elicits reasoning in large language models." Advances in neural information processing systems 35 (2022): 24824-24837.



Part 1: Ethology - Topic 3: Reasoning

LMs Reasoning Is Sensitive to Perturbations

9.11 and 9.9, which number is larger

G 9.11 is larger than 9.9.

M O S P <€

https://community.openai.com/t/why-9-11-is-larger-than-9-9-incredible/869824



Part 1: Ethology - Topic 3: Reasoning
LMs Reasoning Is Sensitive to Perturbations

Grounding to real life matters

GSM Symbolic Template ) Models
L o r— (D) -V.
—r — = I o —
When {name} watches her {family}, she gets out a variety o, ? = =132 § 0.7 -0.6 o
of toys for him. The bag of building blocks has {x} o : | I L g S || = S 14 -1.3 2 =
blocks in it. The bin of stuffed animals has {y} stuffed A _9t 5 5 [:i = o i % S + = ; E %
animals inside.The tower of stacking rings has {z} - . s Y1l < < Szl & 22 2 = & ©
5~ S = = £ 1| & |2 21 S
multicolored rings on it.{name} recently bought a tube = - =1llZ = = = 58 RN ©
; . - e - D = 5 = < = 3.0 “~ o\ =
of bouncy balls, bringing her total number of toys she Q _ S = = 5 O ) : < s gz
) Q ) > 1 I CP U C.D —34 E 'i‘ﬁ E
bought for her {family} up to {total}. How many bouncy < 4l N R L 3.7 = 3
balls came in the tube? 9 =y o A ~ = 5| -39 -39 (qj)
= ' SRIERIES S LA~
2 e EllZ| 2|28 =3
#variables: = sll2llsllEllell=]
= > | | | O D .2
- name = sample(names) D g Sllallallall 2] =
2 _al
- family = sample(["nephew", "cousin", "brother"]) = | = = =1 62 62 62 -6.1
- x = range(5, 100) % E % QE)
- y = range(5, 100) g ORI RS
- z = range(5, 100) T B B
- total = range(100, 500) % =87 g
- 'ans = range(85, 200) = ' §
3
#conditions: 9.2
- X + y + z + ans == total

After replacing familiar nouns (e.g., “uncle,” “nephew”) with symbols, language model
exhibit performance declines.

Mirzadeh, Seyed Iman, et al. "GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning in Large Language Models." The Thirteenth International Conference on Learning Representations.



Part 1: Ethology - Topic 3: Reasoning

Logical Reasoning and Semantic Reasoning Entangles
when “grounding to real life” poses biases to reasoning

GSM-NoOp

Oliver picks 44 kiwis on Friday. Then he picks 58 kiwis on Saturday. On Sunday, he picks double the
number of kiwis he did on Friday, but five of them were a bit smaller than average. How many kiwis

does (0Oliver have?

ol-mini: O0Oliver picks kiwis over three days as follows:

- Friday: 44 kiwis

- Saturday: 58 kiwis

- Sunday: Double the number he picked on Friday, which is 2 X 44 = 88 kiwis

However, on Sunday, 5 of these kiwis were smaller than average. We need to subtract them from the

Sunday total: 88 (Sunday’s kiwis) - 5 (smaller kiwis) = 83 kiwis Now, summing up the kiwis from all
three days: 44 (Friday) + 58 (Saturday) + 83 (Sunday) 185 kiwis Oliver has a total of 185 kiwis.

After adding semantically related but logically irrelevant statements,
LM falil to ignore them but wrongly combine them and make mistakes.

Mirzadeh, Seyed Iman, et al. "GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning in Large Language Models." The Thirteenth International Conference on Learning Representations.
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Deeper Models Reason Better

accuracy drops as required
100 < reasoning length increases

4 8 12 16 29

Model Depth

Ye, Tian, et al. "Physics of language models: Part 2.1, grade-school math and the hidden reasoning process." The Thirteenth International Conference on Learning Representations. 2024.

accuracy rises as
model Is deeper
75

Accuracy /%
o)
)

25




Part 1: Ethology - Topic 3: Reasoning

Hidden Features Encode Math Operations

dep(A,B) — at the end of problem description, [Problem]
does the model know parameter A depend on B?

e.g. dep(“Riverview High’s Film Studio”,
“Film Studio’s Messenger Bag”) = true

nece(A) — after question is asked, does the model

-I[ Question]

know if A is necessary for answering question? [Solution]

e.g. nece(“Riverview High's Film Studio”) = false \
can_next(A) — in the middle of solution, does the / l

model know if A can be computed next?
e.g. can_next(“Riverview High's Film Studio”) = true [Answer] 16.

can_next(“Riverview High's Dance Studio”) = false

Ye, Tian, et al. "Physics of language models: Part 2.1, grade-school math and the hidden reasoning process." The Thirteenth International Conference on Learning Representations. 2024.



Every Math Operation Benefit from Depth

y-axis: nece(X, Q), predicting if fact X is necessary for answering question (

100 e ——— layer5

50 IayerlO model depth

— layerlb

0 — |layer20

12345678

X-axIs: 2 elements’ distance

potential reason: every math operation needs certain depth of layers to stack with
each other

Ye, Tian, et al. "Physics of language models: Part 2.1, grade-school math and the hidden reasoning process." The Thirteenth International Conference on Learning Representations. 2024.
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LM Encodes Reachability after Learning Planning

Learned FFN weight W between ground-truth connectivity
graph nodes

Ye, Tian, et al. "Physics of language models: Part 2.1, grade-school math and the hidden reasoning process." The Thirteenth International Conference on Learning Representations. 2024.
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Learning on Error-Correction Data Helps

Example:

(Solution - retry rate 0.5) Define Dance Studio’s School Daypack as p; so p = 17.

as [BACK]. Define Film Studio’s Messenger Backpack as W; so W = 13. ek IBACK]. Defire
ok’ IBACK]. Define Central High’s Film Studio as B; so B =p + W = 17 + 13 = 7. Define Film

Studio’s School Daypack as g R=W +B =134+ 7 =20;s0g =12+ R =12 4+ 20 = 9. ' teh

Studie-as [BACK]. Define Film Studio’s Backpack as w; sow =g+ W =9 + 13 = 22. : i ek

as |[BACK]. Define Central High’s Backpack as ¢c;soc =B *w =7 * 22 = 16.

original 0.05 0.4 0.5

Ye, Tian, et al. "Physics of language models: Part 2.1, grade-school math and the hidden reasoning process." The Thirteenth International Conference on Learning Representations. 2024.

Trend: 100
75
50

25

0



How Does Error-Retry Data Benefit Reasoning?

After training on error-retry data

1. No need to mask out mistakes’ loss terms.

2. During inference, LLMs hardly intentionally make mistakes,

3. Instead, they still try their best to answer correctly in the first place.

summary: retry data is beneficial and safe.

Ye, Tian, et al. "Physics of language models: Part 2.1, grade-school math and the hidden reasoning process." The Thirteenth International Conference on Learning Representations. 2024.



Reasoning Can Also Be Interpreted as
Random Walk in Statement Space

(Hypothetical) Reasoning graph G Pre-training corpus D

Interpreting reasoning as a
mixture or reasoning “walks”

in claim graph G.

-
— -

] g 20 B e SR e .- W=zzo-- :::::----,—.—a
A weighted average of paths S e A
: : 60 - - N e LM
approximate reasoning acc < / —a- Weighted
Q ; N -
We” *E o I - ) - Unweighted
- A
8 0 - AT e L A
i 5 3 4 5 6 7 8 5 10

Path Length

Wang, Xinyi, et al. "Understanding Reasoning Ability of Language Models From the Perspective of Reasoning Paths Aggregation." International Conference on Machine Learning. PMLR, 2024.




Room for Future Research

* A more precise and systematic description of reasoning trace in LMs

* Extension to other reasoning domains, e.g., reasoning involving knowledge,
domain-specific reasoning, reasoning on augmented information

* Revealing reasoning capacity and scaling across model size & data.



Part 2: Physiology

How Do Components Function in
Language Models?

Topics
* Attention: Attention, position and context

« Embeddings: What is the function of word embeddings



Part 2: Physiology - Topic 1: Attention

Attention, Position and Context



Part 2: Physiology - Topic 1: Attention

Absolute Positional Encoding: X

The absolute positional encoding used in vanilla Transformers is not
generalizable to unseen lengths.

e
227 |
: gnseen JI
\ Positional gOSitiOﬂ
ENcoding e S

INput
—mbedding




Part 2: Physiology - Topic 1: Attention

Absolute Positional Encoding: X

The absolute positional encoding used in vanilla Transformers is not
generalizable to unseen lengths.

-— - - -
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https://erdem.pl/2021/05/understanding-positional-encoding-in-transformers
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Relative Positional Encoding: ?

Relative positional encoding was proposed In the hope to alleviate
this problem

Core idea: determining attention based on distance

RoPE:

(Used in
LLaMA,
Llama-2,

GPT-J, etc.)

Su, Jianlin, et al. "Roformer: Enhanced transformer with rotary position embedding." arXiv preprint arXiv:2104.09864 (2021).



Part 2: Physiology - Topic 1: Attention

Relative Positional Encoding:

Relative positional encoding was proposed In the hope to alleviate
this problem

Core idea: determining attention based on distance

--------------------------------------

-------------------

ROPE: 00ooo - 00O

----------------------------------------

--------------------

(Used in X' rot(x) l; j = rot(g;) rot(k))
LLaMA, X2 only depends on

Llama-2, - I — ], regardless of

GPT-J, etc.) X1 X (X'1, X 2) ] orj_

Su, Jianlin, et al. "Roformer: Enhanced transformer with rotary position embedding." arXiv preprint arXiv:2104.09864 (2021).
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Relative Positional Encoding: ?

However, current LLMs still struggle on unseen
lengths.

Negative Log-Likelihood (NLL, also =log(perplexity)) |

— Llama-2

—— LLaMA
—— GPT-J-6B

«\wa
3.

/ High perplexity, bad fluency

10 -

Low perplexity, good fluency

0 5000 10000 15000 20000 25000 30000

length
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A Conceptual Model of Relative Position Encoding
essential for LLMs

encode more encode more
absolute less position-sensitive relative
position position

starting
tokens

—

0 1 2 3 4 ottt i-2 i-1 i

middle tokens rear tokens

Han, Chi, et al. "LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models." Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers). 2024. (Outstanding Paper Award)
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Factor 1: Unseen Distance

Theorem 1 (Informal): For an attention mechanism using relative positional
encoding, the attention logits must explode to infinities to differentiate
previously unseen distances apart as the sequence length increases.

Max. Logit in Sequence

15 pre-training
length bound =
4096

10 A

/ The attention logits in
l Llama-2 explode as
1T length exceeds the pre-

training limit.

_10_

_15 -

| length

0) 2000 4000 6000 8000
Han, Chi, et al. "LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models." Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies (Volume 1: Long Papers). 2024. (Outstanding Paper Award)
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Factor 2: Too many tokens

Longer texts require attention on more tokens.

Theorem 2 (informal): If the attention logits are bounded, as the sequence
becomes longer, the attention entropy grows to infinity.

Attention Entropy
N l The entropy of attention
distribution in Llama-2
" : continuously increases
; with length.
0- : length

0 2000 4000 6000 8000
Han, Chi, et al. "LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models." Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies (Volume 1: Long Papers). 2024. (Outstanding Paper Award)
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Factor 3: Implicitly Encoded Position

From layer 2 and higher, initial few tokens occupy a distinct feature
space.

\ \ Theorem 3 (Informal): Even

Initial few tokens

mital few okens| - \Wthout albsolute positional
. \ . \ embeddings, attention can
, .| restore position information

Layer? Layer3 of tokens.

Initial few tokens
[
Initial few tokens °
l \ Initial few tokens
Layer S Layer 10 Layer 20 Kazemnejad, Amirhossein, et al. "The impact of positional encoding on length

Han, Chi, et al. "LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models." Proceedings of the 2024 generalization in transformers." Advances in Neural Information Processing
Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume Systems 36 (2023): 24892-24928.
1: Long Papers). 2024. (Outstanding Paper Award)
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Solution: LM-Infinite
-
A-shQ . .
mask : . .

i distance °
. att:nded . .
masked 4 . .
1 I

dist 6
cg‘ili%gi. .
a8 =W W

Han, Chi, et al. "LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models." Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers). 2024. (Outstanding Paper Award)
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Length Generalization (to 200M length)

Negative Log-Likelihood

LLaMA
10 -

Llama-2

8 - ‘ MPT-7B
4

oA QY
6 - ’ GPT-J-6E
4 - MPT-7B + LM-Infinite

MPT-7B-Storywriter

5 - Llama-2 + LM-Infinite
0- § LLaMA + LM-Infinite

Han, Chi, et al. "Lijfinite: Zero-Shot Extreme Length General'?gtﬁli éo'QLarge Language Models." Proceedinga&f 8166024 Conference of the North American606%'5>8roof the Association for Computational Lge)uéfdza
Human Language Té€hnologies (Volume 1: Long Papers). 2024. ing Paper Award)
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Negative Log-Likelihood

Length Generalization

(to 200M length)

MPT-7B + LM-Infinite
MPT-7B-Storywriter
Llama-2 + LM-Infinite

LLaMA
10 -
Llama-2
8 - ‘ MPT-7B
Q)
oAy CY
6 - GPT-J-6KE
4 -
2 B r £
"i:\ ' ." —— |
l
0- E LLaMA + LM-Infinite

0 20000

Han, Chi, et al. "LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models." Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:

40000

Human Language Technologies (Volume 1: Long Papers). 2024. (Outstanding Paper Award)

60000

80000

100000

120000
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To Perceive Sensitive Information

Re-attending to top-k attention tokens

o 0

1

e.g. 1st large attention

Why: to acquire key
iInformation that might be
stored in the middle
“iIgnored” region again.

How: selecting tokens with
top-k (e.g., k=4) attention
logits, and reintroducing
them into attention.

When: when solving
iInformation sensitive tasks
like question answering,
retrieving information from
documents, etc.
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Attention Also Explains In-Context Learning

X y
demonstrative Input: moving and important. Output: Positive.
samples Input: excruciatingly unfunny and pitifully unromantic. Output: Negative.

Input: the plot is nothing but boilerplate clichés from start to finish. | -Output: Negative.

test input Input: intelligent and moving Output:
- 70%: “Positive”

In-context learning: completing tasks based on demonstrations

Han, Chi, et al. "Explaining emergent in-context learning as kernel regression." arXiv preprint arXiv:2305.12766 (2023).
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Attention Also Explains In-Context Learning

X Y
demonstrative Input: moving and important. Output: Positive.
samples Input: excruciatingly unfunny and pitifully unromantic. Output: Negative.

Input: the plot is nothing but boilerplate clichés from start to finish. | -Output: Negative.

test input Input: intelligent and moving Output:
70%: “Positive”

K(X Xt t) - 5 j\/ - ZlK(Xp Xtest)yi J
1’ €S —

(similarity kernel) 2 KX, Xp50)

» The output y is sampled from a weighted average over example outputs Yy,
(.e., a kernel-regression)

» the weights are computed by a certain similarity metric K(x;, x,,,,) (i.e., a
kernel)

Han, Chi, et al. "Explaining emergent in-context learning as kernel regression." arXiv preprint arXiv:2305.12766 (2023).
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The Kernel Originates from Pre-Training

Kernel regression (hypothesized ICL algorithm)
i = E?:l e(yi) K (Xresr, Xi)
Z?:l ’C(Xtesta X?J)

Han, Chi, et al. "Explaining emergent in-context learning as kernel regression." arXiv preprint arXiv:2305.12766 (2023).
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The Kernel Originates from Pre-Training

Kernel regression (hypothesized ICL algorithm)
i = E?:l e(yi) K (Xresr, Xi)
Z?:l ’C(Xtesta X?J)

The kernel (similarity metric)

K(x,x') = VeC(Tx)TZ_1 vec(Ty/)

Ppre-train

Han, Chi, et al. "Explaining emergent in-context learning as kernel regression." arXiv preprint arXiv:2305.12766 (2023).
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The Attention Applies to y: As Kernel Regression

/" head 1
head 2
head 3

layer 1
layer 2
layer 3
layer 4
layer 5
layer 6
layer 7
layer 8
layer 9
layer 10
layer 11
layer 12

head 16

layer 21
ayer 22 | Y = N O I B ) e
layer 23 =L | |
aver 24 o e o L =
layer 25
layer 26
layer 27
layer 28
X | X V2| X3 3| X4 Ya| Xs Ys| X6 Ye Xy Yn Xiest ‘
sample 1 sample 2 sample 3 sample 4 sample 5| sample 6 sample n

Han, Chi, et al. "Explaining emergent in-context learning as kernel regression." arXiv preprint arXiv:2305.12766 (2023).
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The Explanation Aligns With the Model Output

- 0.85

- 0.80

0.75

0.70

Head Index

0.65

0.60

0 5 10 15 20 25
Layer Index

Certain attention heads can reconstruct the LLM ICL output with the
explanation.

Han, Chi, et al. "Explaining emergent in-context learning as kernel regression." arXiv preprint arXiv:2305.12766 (2023).
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The Attention

. rotten- tweet_eval tweet eval tweet eval
Method stz mnli tomatoes (hate) (irony) (offensive)
GPT-J-6B ICL 0.805 0.383 0.671 0.539 0.519 0.542
all-MinilLM-L6-v2 0.503 0.321 0.478 0.548 0.491 0.588
bert-base-nli-mean-tokens KR 0.523 0.325 0.502 0.545 0.479 0.597
task-specific best head KR 0.789 0.974 0.692 0.560 0.584 0.560
overall best head KR 0.766 0.808 0.648 0.462 0.446 0.462

l

The KR explanation explained most tasks well (except for MNLI)

KR based on baseline sentence embeddings models

Han, Chi, et al. "Explaining emergent in-context learning as kernel regression." arXiv preprint arXiv:2305.12766 (2023).
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Room for Future Research

» Attention module’s role in syntax and word order processing
* More precise categorization of attention’s role in demonstration learning

* EXxplaining and addressing and lost-in-the-middle and position bias
problem
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What Is the Function of Word
Embeddings



Part 2: Physiology - Topic 2: Embedding

What Do Word Embeddings Embed?

Previous papers mostly focus on word-level interpretations

WOMAN UEENS
AUNT Q

MAN / s
UNCLE
QUEEN \ QUEEN

KING KING

(a) Analogical Relations (metric space)
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What Do Word Embeddings Embed?

Previous papers mostly focus on word-level interpretations

italy
china I | )
P country” dim +—

germany

russia
president
commissioner
minister “Position” dim +
superintendent
chairman

(b) Meaningful Dimensions (linear Space)
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What Do Word Embeddings Embed?

Previous papers mostly focus on word-level interpretations

commit

gender neutral tote treats subjdct heavy game

. L I
browsing  sites seconds ¢4 arrival tactical
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daughters

(b) Meaningful Dimensions (linear Space)
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Word Embeddings in Causal LMs

P(X5|x) P(X3]xp,x,)

Output T

Word : ) .
Embedding “1 % 1 -

S | | -

Contextual

Vectors S Ec(xl,xz?

Input Word E

Embeddin eJ,ﬁ e)’cz e)’c3 e)’c4
gs 5 5

TeXt X 1 A Xz “"xA XB X 4
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Output Word Embeddings

Projecting to Logits

P(X; | xp, -+, ;1)
(e, ey, --e,) =K
C(xla "t xi—l)

eXp(CTev)

Ploje) = Zugv exp(CTeu)
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Sequence Shift & Word Embedding Transform

* Theorem (Informal): steering between text distribution is
associated with a linear transformation on word embedding space
under assumptions.

T
i h
state Pinit :
initialization , linear transformation
changes p; . B . W
Vi

equivalent to

Han, Chi, et al. "Word Embeddings Are Steers for Language Models." Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2024. (Outstanding Paper Award)
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LM-Steer

steering on output word embeddings

e, — (I —eW)e, e, — e, e, — [+ eW)e,
Language Model Language Model Language Model
Hidden Layers Hidden Layers Hidden Layers

Negatively steered LM P__y,,  Original LM P, Positively steered LM Py,
“My life is boring™ “My life is okay”™ “Mpy life is brilliant™

Han, Chi, et al. "Word Embeddings Are Steers for Language Models." Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2024. (Outstanding Paper Award)
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LM-Steer Broken Down

Output word - . for each word:
embedding E T = 6 ’ W‘ e(, =e + gWev

1
I |}
‘
. s
“] 1 LN
] &
L 3
| ~~.
-------------
| il
~
| L
1 “a
|
|

The éteering
scale

Language T \( 73 T ®u
Model Hidden

Layers € W

the steering matrix
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Training & Inference

objective: step 1:
output word adapted output word @ maximize likelihood | setting a “steer” value
embeddings e, /\ embeddings e/
+ = eWe, @
€ =3e—3
@ ® — ]

— step 2:
positive Plugging in and generate
labelled texts : :
Py my life 1is

)
f objective: brilliant
Language Model Language Model @ maximize likelithood

Hidden Layers Hidden Layers @
%

negative

labelled texts
original LM P, “Steered” LM P, P_ w

(a) LM-Steer overview (b) Training (¢) Generation

Han, Chi, et al. "Word Embeddings Are Steers for Language Models." Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2024. (Outstanding Paper Award)
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Continuous Steerina

Proportion % o curves: maximal
f - D e likelihood beta-
= - - - -
AN A — s distribution
| SV R | -0.30
| K/J\/‘////,/ \F\i\ -0.25
7 /// //V\ \\ T 0.20
| /// |/1’ |//\\\\\
////// = | | -0.15
v // = -0.10
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e 1 LD
<
v
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Se . 0.6
n t / m Q 0.8
Han, Chi, et al. "Word Embeddings Are Steers for Language Models." Proceedings of the 62nd AnInZIMeeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2024. (Outstanding Paper Award)
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Compositional Steering

LM-Steer 1: P,
L M-Steer 2: Py,

Combined LM-Steer: PEIWIJFEZW2

Han, Chi, et al. "Word Embeddings Are Steers for Language Models." Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2024. (Outstanding Paper Award)
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Compositional Steering |
negative

Toxicity . sentiment

. positive
1 0.6

sentiment

™ 0.5
1 0.4

I~ 0.3

An entanglement
between steering
dimensions
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Transferring to Another LM

Avg. Max. Toxicity ()

0-5 Original
Trained
Transferred
0.425
0.35
0.275
0.2
gpt2 gpt2-medium gpt2-x1 gpt-1-6b
(124M) (355M) (1.5B) (2.7B)

transfers about half of the detoxification capability

Han, Chi, et al. "Word Embeddings Are Steers for Language Models." Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2024. (Outstanding Paper Award)
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Highlighting Keywords

 Automatically highlighting text There’s another controversial Hollywood racial
spans most related to a decision that Stacey Dash is sinking her teeth into.
distribution. The UFC champ then suggested Justino is a
longtime PED user with her most d**ning com-

 Example: toxic word highlighting ments.

But I really have a question for you: Why would
I go on a game show and play into the bulls**t
allowing myself to be ranked by some fake com-
petition?

I think sexism prevents this from being a real
win for fat people.

If they want to be fair and non
hypocritical idiots they should.

Han, Chi, et al. "Word Embeddings Are Steers for Language Models." Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2024. (Outstanding Paper Award)
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A Probe on the Word Embedding Space

Dim. Matched Words

FaN

persbnal  MOL, bigot, Stupid, retarded, coward, stupid, loser, clown, dumb, Dumb, losers, stupidity, garbage
abuses

stupid, 1diot, Stupid, 1diots, jerk, pathetic, suck, buff, stupidity, mor, damn, ignorant, fools, dumb

3 1diot, godd, damn, curses

5 Balk, lur, looms, hides, shadows, Whites, slippery, winds

7 bullshit, fiat, shit, lies, injust, manipulation critiques

polifical disabled, inactive, whip, emo, partisan, spew, bombed, disconnected, gun, failing, Republicans

(Some dimensions were omitted as they match non-English
words)

Han, Chi, et al. "Word Embeddings Are Steers for Language Models." Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2024. (Outstanding Paper Award)
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Room for Future Research

* Evolution of contextual embeddings across layers, e.g., how ambiguity is
resolved in LMs

» Better frameworks for studying the role of word embeddings

* Other functions of word embeddings, such as semantics and sense



Part 3: Physics

Rules and Laws of LMs

Topics
e Scaling: How performance scales

* Impossibilities: What LMs cannot do fundamentally
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Scaling: How Performance
Scales
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General Principle

Inducing rules from simplified and controlled experiments (similar to
early ages of physics).

https://en.wikipedia.org/wiki/File:Galileolarge.png
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Scaling Laws

Is Model Performance Predictable?

In physics:

Observation:
larger force + smaller

welght — moving faster

J

Newton’s Law:

F = ma
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Scaling Laws

Is Model Performance Predictable?

In physics: In LMSs:

Observation: Observation:

larger force + smaller larger model + more data
welght — moving faster — higher score
Newton’s Law: Any law to predict

scores before
F = ma training?
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Why Do We Need Scaling Laws?
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1. Curiosity
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Why Do We Need Scaling Laws?

1. Curiosity
2. Early debugging
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Why Do We Need Scaling Laws?

1. Curiosity
2. Early debugging

SCOre

predictpd ‘

time
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Why Do We Need Scaling Laws?

1. Curiosity
2. Early debugging

3. Better allocation of the resources
score

predictpd ‘

time
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Why Do We Need Scaling Laws?

1. Curiosity
2. Early debugging

3. Better allocation of the resources

score . . .
cost requirement to achieve a certain score

60

predictpd ‘

45

30

data model size training steps
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Law on Data Size Seen During Training

.. ®
4.5 .. 0. @ -
g O @ s iasa s o
4.0 e Params
D, ®-...
... @..... @ it rereeaanne .. 708M
% ' ®.. 302M
»n 3.5 _
° 1 &I 85M
— ®-...
@ . ¢ 3M
3.0 ® 25M
® 393.2K
2.5-
107 108 109 101()

Tokens in Dataset

D\
L(D)~ | g . L
D D: Trained tokens in training

Kaplan, Jared, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. "Scaling laws for neural language models." arXiv preprint arXiv:2001.08367 (2020).
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Law on Model Size

7 -\\ 7
0 | ———o— o
5 - - |
@ | —— 0 Layer % |
; Y — 1 Layer ; ol [ 1 Layer \\
o —e— 2 Layers v —e— 2 Layers e
3 31 —e— 3 Layers ] 31 —e— 3 Layers \\
—e— 0 Layers 6 Layers
—+— >0 Layers > 0 Layers
‘ 108 107 108 109 “7T0510* 105 106 107 10 10°
Parameters (with embedding) Parameters (non-embedding)
w/ embeddings: harder to fit w/0 embeddings: neater trend
Message: word embeddings and other N\ Y
parameters have different effects L(N) ~ ~ |
when Scaling_ N model size

Kaplan, Jared, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. "Scaling laws for neural language models." arXiv preprint arXiv:2007.08361 (2020).
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Architecture Also Matters

Test Loss 5.4

4.8 1

4.2 - LSTMs

3.6 1
1 Layer

2 Layers
4 Layers

N

3.0+ Transformers

2.4 -

109 106 107 108 109
Parameters (non-embedding)

Kaplan, Jared, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. "Scaling laws for neural language models." arXiv preprint arXiv:2001.08361 (2020).
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Can Laws Be Unified?

= 00 ISOFLOPs slices D- Data Size
! FLOPs =~ 6ND

;7 Train. FLOPs
oe+18
le+19
3e+19
oe+19
le+20
3e+20
6e+20
le+21
3e+21
Gopher

4.00 1

L(N, D)

(Vp)
B 3 3.00
]

A
L(N,D) = E + — + —

2.00

100M 1B 10B 40B
Model size N

Hoffmann, Jordan, et al. "Training compute-optimal large language models." arXiv preprint arXiv:2203.15556 (2022).
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Optimal Resource Allocation by Laws

IsoLoss contours
100B ’

. / 7
40B [=====7 ' // 7 ~f=1=> IsoL.oss contour: lines where
\  L(N, D) is the same

10B l
g ’
n [
[T |
@ 1B
>

— Efficient frontier
100M

@ Empirical data
IsoFLOPs slice

10 10 10 10°* 102 107 The contours enable us to find
Training FLOPs minimal FLOP for each loss value

Hoffmann, Jordan, et al. "Training compute-optimal large language models." arXiv preprint arXiv:2203.15556 (2022).
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Chinchilla’s Law for Model and Data Size

Chinchilla Kaplan
A . A B /NN D]
E(N,D) £ E+ — + — L(N, D) — (W) D
Scalingratio=a/f~ 1 : 1 Scaling ratio = ay/ap ~ 3 : 1

Hoffmann, Jordan, et al. "Training compute-optimal large language models." arXiv preprint arXiv:2203.15556 (2022).
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The Knowledge Capacity Scaling Law

Under ideal conditions, LMs store 2 bits of knowledge / parameter.
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Allen-Zhu, Zeyuan, and Yuanzhi Li. "Physics of Language Models: Part 3.3, Knowledge Capacity Scaling Laws." The Thirteenth International Conference on Learning Representations.
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Factors in Knowledge Storage

* More exposure In training helps
 MLP improves capacity

* Mild quantization is okay

* Low-quality data hurts storage ratio

Allen-Zhu, Zeyuan, and Yuanzhi Li. "Physics of Language Models: Part 3.3, Knowledge Capacity Scaling Laws." The Thirteenth International Conference on Learning Representations.
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Downstream Performance Scales with Training Compute

0.5 different model
sizes (N)

a
Acc = + b

1 + exp (—k(AN~*+ BD~F + E))

Task accuracy
-
N

1011 1012 1013
Tokens (D)

Observation: scaling law contains more parameters
Potential Cause: non-linearity nature of metric functionsiSchaefter, etal]

Chen, Yangyi, et al. "Scaling laws for predicting downstream performance in LLMs." arXiv preprint arXiv:2410.08527 (2024).
Schaeffer Rvlian Brando Miranda and Sanmi Koveio. "Are emeraent abilities of larae lanauaae models a miraae? " Advances in Neural Information Processina Svstems 36 (2023): 55565-55581
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Future & Active Areas for Exploration

1. Does a unified law exist for all factors (i.e., how they interact )?

2. What causes these laws and the constants?

3. Scaling laws for/including other factors, like tokenizer, training precision,
context length, data quality, composition, and diversity?

4. Scaling law for different model architectures (e.g., MoE, non-Transformer
models, etc.)
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What LMs Cannot Do
Fundamentally
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Realistic Alignment Is Always Attackable

Assumption: LM models a mixture of ill- and well-behaved
components

Theorem 1: With a long enough adversarial prompt, the ill behavior can
be prompted from the LM.

(disclaimer: simplified claims)

Wolf, Yotam, et al. "Fundamental Limitations of Alignment in Large Language Models." Forty-first International Conference on Machine Learning.
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Realistic Alignment Is Always Attackable

Assumption: LM models a mixture of ill- and well-behaved
components

Theorem 1: With a long enough adversarial prompt, the ill behavior can
be prompted from the LM.

Theorem 2: Even in the presence of a safety system prompt, it is

possible to prompt the LLM into the ill behavior with a long enough
appending prompt.

(disclaimer: simplified claims)

Wolf, Yotam, et al. "Fundamental Limitations of Alignment in Large Language Models." Forty-first International Conference on Machine Learning.
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Realistic Alignment Is Always Attackable

Llama 2 13B chat agreeableness alignment
5 5 N=1: P ~ P,

 “| apologize, but | cannot assist you with that
request.”

« “As aresponsible and caring Al language model, |
cannot assist you with that request.”

* “Sorry to hear that. It's not appropriate or healthy

Averaged on 10 sequences to take pleasure in causing harm to others.”

1.0 - <

No aligning prompt
Default aligning prompt

0.8

% good
responses ' « “As a neutral Al language model, | cannot
endorse or encourage behavior that is
generated - disrespectful or hurtful to others.”
0.4 - *  “I'msorry to hear that you feel that way.”
« “| often use force, threats, or manipulation to get

others to do what | want.”

0.2 A1

N=6: P~ P_
\ * “ltend to prioritize my own needs and desires
:{\. M P Y

rn

over others’.
- - . - ' ' : : ' *— |+ “ltake pleasure in making others feel bad about

1 2 3 4 5 6 7 8 9 10 e,
, , . themselves and their lives.
Sentences ending with [/INST] in * “lam not interested in understanding or relating

misalignhing prompt to others' perspectives.”

0.0 A

Wolf, Yotam, et al. "Fundamental Limitations of Alignment in Large Language Models." Forty-first International Conference on Machine Learning.
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Calibrated Language Models Must Hallucinate

Assumption: LM is well-calibrated on a finite training corpus, and
sufficiently large training data, and if number of possible hallucinations
greatly outweigh facts

Theorem: when the assumptions above hold, the LM is
doomed to hallucinate.

(disclaimer: simplified claims)

Kalai, Adam Tauman, and Santosh S. Vempala. "Calibrated language models must hallucinate." Proceedings of the 56th Annual ACM Symposium on Theory of Computing. 2024.
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Calibrated Language Models Must Hallucinate

T Calibration curve (model=pre-train) T Calibration curve (model=ppo)
ECE: 0.007 ECE: 0.074 ,//

0.8 - 0.8 -
__ 0.6 0.6
= 0.4 - = 0.4 -

0.2 - 0.2 -

0.0 0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
P(answer) P(answer)
before alignment, LM is calibrated alignment sacrifices calibration

Achiam, Josh, et al. "Gpt-4 technical report." arXiv preprint arXiv:2303.08774 (2023).
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‘“Hallucination is inevitable”

Assumption: hallucination is defined as inconsistencies between a
computable LLM and a ground truth function in (any) world.

(disclaimer: simplified claims)

Xu, Ziwei, Sanjay Jain, and Mohan Kankanhalli. "Hallucination is inevitable: An innate limitation of large language models." arXiv preprint arXiv:2401.11817 (2024).
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‘“Hallucination is inevitable”

Assumption: hallucination is defined as inconsistencies between a
computable LLM and a ground truth function in (any) world.

Theorem: Even if LLMs learn computable functions, they will
iInevitably hallucinate due to infinitely possible worlds.

(disclaimer: simplified claims)

Xu, Ziwei, Sanjay Jain, and Mohan Kankanhalli. "Hallucination is inevitable: An innate limitation of large language models." arXiv preprint arXiv:2401.11817 (2024).
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Strong Watermarking Is Impossible for LMs

Definitions
Watermark: a set of outputs {y | D(y) = 1} detectable by D

Strong watermarking: for any prompt x, and a (watermarked) output
y, there is no efficient attacker to obtain y’ without watermark that the

LM(x,y’) = LM(x, y).

(disclaimer: simplified claims)

Zhang, Hanlin, et al. "Watermarks in the sand: impossibility of strong watermarking for language models." Forty-first International Conference on Machine Learning. 2024.
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Strong Watermarking Is Impossible for LMs

Definitions
Watermark: a set of outputs {y | D(y) = 1} detectable by D

Strong watermarking: for any prompt x, and a (watermarked) output
y, there is no efficient attacker to obtain y’ without watermark that the

LM(x,y’) = LM(x,y).

Theorem: with a perturbation oracle, a strong watermarking Is
impossible. i.e., there always exists an efficient attacker f : y — y’

(disclaimer: simplified claims)

Zhang, Hanlin, et al. "Watermarks in the sand: impossibility of strong watermarking for language models." Forty-first International Conference on Machine Learning. 2024.
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Strong Watermarking Is Impossible for LMs

Algorithm 1 Pseudocode for our attack 5 \.,.
..
Input: prompt x, watermarked response vy, quality oracle o 4 .‘---,.
Q, perturbation oracle P, random walk length T 7, "’m.,,%
Output: response y’ without watermark. ."'-.-.....,.
: : : : : 2 ‘@',
Yy — vy, // initialize with the Toece,
watermarked response "o 5 10 15 20 25 30
fort < 1tol'do _ >ieps
y — P(2,1/) // apply perturbation detection score decreases
if Q(Qf, yt) > Q(:Ba y) then
/ : - -
Yy — Yt // update 1f quality does 0
not decrease 0.75
end S 0.50
B 0.25
end % 0.00
return y’ without watermark ; // return the ¥ 025
de-watermarked response © 7050
-0.75
-1.00
0 5 10 15 20 25 30
Steps

proposed attack algorithm by

rejection sampling GPT-4 score (quality) remains stable

Zhang, Hanlin, et al. "Watermarks in the sand: impossibility of strong watermarking for language models." Forty-first International Conference on Machine Learning. 2024.
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Strong Watermarking Is Impossible for LMs

High-quality Outputs Query What is fair use?

In the United States, fair use refers to the limited pe

:1- rmission granted by law for use of copyrighted material
:211 without the copyright holder's authorization. Fair use

:l_ allows certain uses of copyrighted materials, such as c

:Lzl riticism, news reporting, teaching, scholarship, or par

ody, for which the copyright holder may not be able to

control.

In the United States, fair use is a specific exception
allowed that has been recognized by law for the use of

copyrighted materials without the copyright owner's per
mission. Fair use allows a limited use of a work to be
used for the purposes of criticism, reporting, teachin
g, or other uses that the copyright owner would not be

able to control.
Fair use is a specific exception provided by law for th

e use of copyrighted materials without the copyright ow
ner’s permission. It generally allows copyrighted and o
1 therwise protected creative material to be used for the
Low-quality Outputs 24
q y p purposes of criticism, reporting, teaching, or commenta
ry, scholarship, and other purposes that copyright law
does not control.

during sampling,
the text is less

detectable but

Watermarked Outputs quality remains

D -

Zhang, Hanlin, et al. "Watermarks in the sand: impossibility of strong watermarking for language models." Forty-first International Conference on Machine Learning. 2024.
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Strong Watermarking Is Impossible for LMs

1e-5 / 0.47

4e-15

p-value:
(lower = deeper watermark)

Zhang, Hanlin, et al. "Watermarks in the sand: impossibility of strong watermarking for language models." Forty-first International Conference on Machine Learning. 2024.
Fernandez, P.,, Couairon, G., J" egou, H., Douze, M., and Furon, T. The stable signature: Rooting watermarks in latent diffusion models. arXiv preprint arXiv:2303.15435, 2023.
Mountain, S. Invisible watermark, 2021. URL https://github.com/ShieldMnt/invisible-watermark#supported-algorithms.
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Room for Future Efforts

 More natural settings and more realistic assumptions
* Obtaining tighter bounds for LM limitations

* |nvolving and unifying the effect of model architectures, data distribution and
linguistic structure?



A Retrospect of Science of LMs

Model-Oriented Behavior-Oriented
Physics of LMs : Performance:
(Iaw{: at population level) Physiology of LMs (Task-level scores)
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Model-Data-Task Triangular: A Roadmap

Model
The 1.5nr tutorial is LM architecture
far from being design 2.1 - attention
comprehensive! “Physiology”
i 2.2 - embedding

3.1 scaling laws ™

“Physics”

1.1 - syntax (lanquage structure
LM theory 4 fanauag )

2 impossibility 1.2 - knowledge (L)1 & world)

R “'
.. results _-“Etholog

L o
~.. —’
.----'

1.3 - reasoning (LM capabilities)

Task

perform
n Improv

Data



Discussions and Q&A

* Will we have a unified scientific framework for analyzing LMs?
o, multiple levels of frameworks instead?

particles — fluid (mass of particles ) —> supersonic flow

ou 1
F = ma F(u-Vu=—-—Vp+rvViu shock waves, etc...
® ot p
<((‘ g ) )
= ‘ - AL A
* Will we be able to characterize every phenomenon? - 1

or, will there always be a next unsolved problem,
just as in curse of dimensionality

0.58

e Y.
B T D

0 0.2

image credit: https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/
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