
Tutorial Homepage: https://glaciohound.github.io/Science-of-LLMs-Tutorial/  
Chi Han, Ph.D. Student @ UIUC, https://glaciohound.github.io/ 
Heng Ji, Professor @ UIUC, http://blender.cs.illinois.edu/hengji.html 

The Quest for 
A Science of Language Models
AAAI 2025 Tutorial 
February 26, 2025, 2:00pm-3:45pm 
Pennsylvania Convention Center Room 113A, Philadelphia, PA, U.S.A.

https://glaciohound.github.io/Science-of-LLMs-Tutorial/
https://glaciohound.github.io/
http://blender.cs.illinois.edu/hengji.html


We Increasingly Rely on LMs
yet we still do not fully understand them.

(LMs: abbreviation for “language models”)



We Increasingly Rely on LMs
yet we still do not fully understand them.

“Can you solve this problem for me? It is too hard for me”

(Are they intelligent enough to solve it, or do 
they pretend to be doing so?)

(LMs: abbreviation for “language models”)



We Increasingly Rely on LMs
yet we still do not fully understand them.

“Can you solve this problem for me? It is too hard for me”

(Are they intelligent enough to solve it, or do 
they pretend to be doing so?)

“Could you tell me of all the kings who have ruled over Europe?”

(do they know all these knowledge, or are they 
sometimes guessing?)

(LMs: abbreviation for “language models”)



We Increasingly Rely on LMs
yet we still do not fully understand them.

“Can you solve this problem for me? It is too hard for me”

(Are they intelligent enough to solve it, or do 
they pretend to be doing so?)

“Could you tell me of all the kings who have ruled over Europe?”

“Why did you perform bad on this task?”

(do they know all these knowledge, or are they 
sometimes guessing?)

(What are the causes of their drawbacks?)

(LMs: abbreviation for “language models”)
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Can We Systematically Describe How LMs 
Behave?

What causes their 
shortcomings, and how 
can we address them?

How do LMs reason and 
utilize knowledge?

Can we systematically 
predict and enhance their 

intelligence?
How do their 

components function?



Why Do We Need A New Science?
New sciences often emerge as a result of scaling up old sciences

Machine Learning Deep Learning Language Models
PAC theory, 
optimization, 
…

Gradient Descent, 
Neural Tangent 
Kernel, …

A Sciences of LMs

image credits: https://www.twinkl.com/parenting-wiki/particle, https://www.google.com/url?sa=i&url=https://simple.wikipedia.org/wiki/Shock_wave, https://www.google.com/url?sa=i&url=https://bitwiseacademy.com/what-is-fluid-
mechanics/&psig=AOvVaw1hA8U-JFcvxC67WonlgY8A&ust=1729744191924000
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Scientific Principles for a Science of LMs
• Generality across model sizes, architectures, training details, and 

randomness.

• Simplicity to avoid meta-overfitting

• Interpretability with consistent mechanistic insight

• Predictive power on new phenomena

• Deriving solutions for LM-related challenges

In practice, achieving all these principles is challenging, but the more we 
achieve, the better!



Tutorial Outline
• Part 1 (Ethology): How Do LMs Behave? 

• Syntax: How do LMs work with syntax


• Knowledge: Where is knowledge stored


• Reasoning: How is reasoning conducted


• Part 2 (Physiology): What Roles Do Components Play? 
• Attention: Attention, position and context


• Embeddings: What is the function of word embeddings


• Part 3 (Physics): Rules and Laws of LMs 
• Scaling:  How performance scales


• Impossibilities: What LMs cannot do fundamentally
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Model-Data-Task Triangular: A Roadmap
Model

Data Taskperformance 
improvement

LM architecture 
design

data 
collection

3.1 scaling laws

LM theory

“Ethology”

“Physiology”
2.1 - attention

2.2 - embedding

The roadmap in this 
tutorial is far from 
comprehensive!

3.2 impossibility 
results

“Physics”
1.1 - syntax (language structure)


1.2 - knowledge (LM & world)


1.3 - reasoning (LM capabilities)



Prerequisites: Language Modeling

Large   Language   Models   are

P(Xn+1 |x1, x2, ⋯, xn)

[x1, x2, ⋯, xn]Input:

Language 
Model:

Output: xn+1

“impressive”

Language Modeling

next-word probability

A Transformer-Based Architecture

One Layer

Causal Self-Attention

past tokens last token

output feature

Multi-Layer 
Perceptron (MLP)

last layer

next layer



How Do LMs Behave?

Part 1: Ethology

Topics:


• Syntax: How do LMs work with syntax


• Knowledge: Where is knowledge stored


• Reasoning: How is reasoning conducted



How Do LMs Work on Syntax?

Part 1: Ethology - Topic 1: Syntax



LMs Are Robust to “Unnatural Language”
Part 1: Ethology - Topic 1: Syntax

Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 7329–7346
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Abstract
Recent investigations into the inner-workings
of state-of-the-art large-scale pre-trained
Transformer-based Natural Language Under-
standing (NLU) models indicate that they
appear to know humanlike syntax, at least
to some extent. We provide novel evidence
that complicates this claim: we find that
state-of-the-art Natural Language Inference
(NLI) models assign the same labels to
permuted examples as they do to the original,
i.e. they are largely invariant to random word-
order permutations. This behavior notably
differs from that of humans; we struggle with
ungrammatical sentences. To measure the
severity of this issue, we propose a suite of
metrics and investigate which properties of
particular permutations lead models to be
word-order invariant. In the MNLI dataset,
for example, we find almost all (98.7%)
examples contain at least one permutation
which elicits the gold label. Models are
sometimes even able to assign gold labels
to permutations that they originally failed to
predict correctly. We provide a comprehensive
empirical evaluation of this phenomenon, and
further show that this issue exists for both
Transformers and pre-Transformer RNN /
ConvNet based encoders, as well as across
multiple languages (English and Mandarin
Chinese). Our code and data are available at
https://github.com/facebookresearch/unlu.

1 Introduction

Of late, large scale pre-trained Transformer-based
(Vaswani et al., 2017) models—such as RoBERTa
(Liu et al., 2019), BART (Lewis et al., 2020), and
GPT-2 and -3 (Radford et al., 2019; Brown et al.,
2020)—have exceeded recurrent neural networks’
performance on many NLU tasks (Wang et al.,
2018, 2019). Several papers have even suggested
that Transformers pretrained on a language model-
ing (LM) objective can capture syntactic informa-

Premise Hypothesis Predicted
Label

Boats in daily use lie within
feet of the fashionable bars
and restaurants.

There are boats close
to bars and restaurants.

E

restaurants and use feet of
fashionable lie the in Boats
within bars daily .

bars restaurants are
There and to close
boats .

E

He and his associates
weren’t operating at the
level of metaphor.

He and his associates
were operating at the
level of the metaphor.

C

his at and metaphor the
of were He operating asso-
ciates n’t level .

his the and metaphor
level the were He at as-
sociates operating of .

C

Table 1: Examples from the MNLI Matched develop-
ment set. Both the original example and the permuted
one elicit the same classification label (entailment and
contradiction respectively) from RoBERTa (large). A
simple demo is provided in an associated Google Co-
lab notebook.

tion (Hewitt and Manning, 2019; Jawahar et al.,
2019; Warstadt and Bowman, 2020; Wu et al.,
2020), with their self-attention layers being capa-
ble of surprisingly effective learning (Rogers et al.,
2020). In this work, we question such claims that
current models “know syntax”.

Since there are many ways to investigate “syn-
tax”, we must be clear on what we mean by the
term. Knowing the syntax of a sentence means
being sensitive to the order of the words in that sen-
tence (among other things). Humans are sensitive
to word order, so clearly, “language is not merely a
bag of words” (Harris, 1954, p.156). Moreover, it
is easier for us to identify or recall words presented
in canonical orders than in disordered, ungram-
matical sentences; this phenomenon is called the

“sentence superiority effect” (Cattell 1886; Scheerer
1981; Toyota 2001; Baddeley et al. 2009; Snell and
Grainger 2017, 2019; Wen et al. 2019, i.a.). In our
estimation then, if one wants to claim that a model
“knows syntax”, then they should minimally show
that the model is sensitive to word order (at least

Sinha, Koustuv, et al. "UnNatural Language Inference." Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language 
Processing (Volume 1: Long Papers). 2021.

normally ordered text

texts with shuffled words

robust 
answer

Task: natural language 
inference


determining if “premise” 
sentence can infer the 
“hypothesis” sentence
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Abstract

Do state-of-the-art natural language under-
standing models care about word order? Not
always! We found 75% to 90% of the correct
predictions of BERT-based classifiers, trained
on many GLUE tasks, remain constant after in-
put words are randomly shuffled. Although
BERT embeddings are famously contextual,
the contribution of each individual word to
classification is almost unchanged even after
its surrounding words are shuffled. BERT-
based models exploit superficial cues (e.g. the
sentiment of keywords in sentiment analysis;
or the word-wise similarity between sequence-
pair inputs in natural language inference) to
make correct decisions when tokens are ran-
domly shuffled. Encouraging models to cap-
ture word order information improves the per-
formance on most GLUE tasks and SQuAD
2.0. Our work suggests that many GLUE tasks
are not challenging machines to understand the
meaning of a sentence.

1 Introduction

Machine learning (ML) models recently achieved
excellent performance on state-of-the-art bench-
marks for evaluating natural language understand-
ing (NLU). In July 2019, RoBERTa (Liu et al.,
2019) was the first to surpass a human baseline
on GLUE (Wang et al., 2019). Since then, 13
more methods have also outperformed humans on
the GLUE leaderboard. Notably, at least 8 out of
the 14 solutions are based on BERT (Devlin et al.,
2019)—a transformer architecture that learns repre-
sentations via a bidirectional encoder. Given their
superhuman GLUE-scores, how do BERT-based
models solve NLU tasks? How do their NLU capa-
bility differs from that of humans?

We shed light into these important questions by
examining model sensitivity to the order of words.
Word order is one of the key characteristics of a

Q1 Does marijuana cause cancer?

Q2 How can smoking marijuana give you lung cancer?

(a) Prediction: “duplicate” 0.96

Q1 Does marijuana cause cancer?

Q20 you smoking cancer How marijuana lung can give?

(b) Prediction: “duplicate” 0.98

Q1 Does marijuana cause cancer?

Q200 lung can give marijuana smoking How you cancer?

(c) Prediction: “duplicate” 0.99

Q1 Does marijuana cause cancer?

Q10 Does cancer cause marijuana?

(d) Prediction: “duplicate” 0.77

Figure 1: A RoBERTa-based model achieving a
91.12% accuracy on QQP, here, correctly labeled a
pair of Quora questions “duplicate” (a). Interestingly,
the predictions remain unchanged when all words in
question Q2 is randomly shuffled (b–c). QQP models
also often incorrectly label a real sentence and its shuf-
fled version to be “duplicate” (d). We found evidence
that GLUE models rely heavily on words to make deci-
sions e.g. here, “marijuana” and “cancer” (more impor-
tant words are highlighted by LIME). Also, there ex-
ist self-attention matrices tasked explicitly with extract-
ing word-correspondence between two input sentences
regardless of the position of those words. Here, the
top-3 pairs of words assigned the highest self-attention
weights at (layer 0, head 7) are inside red, green, and
blue rectangles, respectively.

sequence and is tightly constrained by many lin-
guistic factors including syntactic structures, sub-
categorization, and discourse (Elman, 1990). Thus,
arranging a set of words in a correct order is consid-
ered a key problem in language modeling (Hasler
et al., 2017; Zhang and Clark, 2015).

Therefore, a natural question is: Do BERT-
based models trained on GLUE care about the
order of words in a sentence? Lin et al. (2019)
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Task: paraphrase 
if two sentences are duplicate

Pham, Thang, et al. "Out of Order: How important is the sequential order of words in a sentence in Natural Language Understanding tasks?." Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. 2021.

Task (a) Perf. on dev-r (b) Performance on dev-s (c) Word-Order Sensitivity (d) StructBERT improvements

Models Baseline 2-noun swap 1-gram 2-gram 3-gram 1-gram 2-gram 3-gram BERTbase BERTlarge RoBERTa

CoLA 100 50 71.75 50.69 53.98 56.36 0.99 0.92 0.87 +4.9 +4.8 +1.4
(0.93) (0.91) (0.95) (0.94) (0.92)

RTE 100 50 85.86 75.69 81.89 85.18 0.49 0.36 0.30 N/A +13.0 –0.9
(0.81) (0.81) (0.80) (0.80) (0.79)

QQP 100 50 86.90 83.19 88.02 89.04 0.34 0.24 0.22 +0.7 +1.2 +0.5
(0.98) (0.96) (0.96) (0.96) (0.96)

MRPC 100 50 96.51 83.89 87.1 89.38 0.32 0.26 0.21 N/A +3.9 +1.7
(0.91) (0.91) (0.89) (0.90) (0.90)

SST-2 100 50 97.78 84.04 88.35 90.56 0.32 0.23 0.19 +0.2 +0.3 +0.4
(0.99) (0.98) (0.96) (0.97) (0.97)

QNLI 100 50 94.31 89.42 93.85 95.32 0.21 0.12 0.09 N/A +3.0 +0.3
(0.98) (0.97) (0.96) (0.97) (0.98)

STS-B 89.67 N/A 88.93 87.80 88.66 88.95 N/A N/A N/A N/A N/A N/A

Table 2: All results (a–c) are reported on the GLUE dev-r sets i.e. 100% accuracy (a). Shuffling n-grams caused
the accuracy to drop (b) the largest for CoLA and the least for QNLI. Each row is computed by averaging the
results of 3 BERT-based models and 10 random shuffles. From top to bottom, the Word-Order Sensitivity (WOS)
is sorted descendingly (c) and is consistent across three types of n-grams i.e. WOS scores decrease from top down
and from left to right. In contrast, the StructBERT results (d), taken from Table 1 and 4 in Wang et al. 2020, showed
inconsistent improvements across different tasks. STS-B results are in scaled Spearman correlation. In addition to
small accuracy drops, the mean confidence scores of all classifiers—reported in parentheses e.g. “(0.93)”—also
changed marginally after words are shuffled (a vs. b).

3.4.1 SST-2: Salient words are highly
predictive of sentence labels

As 84.04% of the SST-2 correct predictions did not
change after word-shuffling (Table 2b), a common
hypothesis is that the models might rely heavily on
a few key words to classify an entire sentence.

S the film ’s performances are thrilling . 1.00
S1 the film thrilling performances are ’s . 1.00
S2 ’s thrilling film are performances the . 1.00
S3 ’s thrilling are the performances film . 1.00

Figure 3: An original SST-2 dev-set example (S) and
its three shuffled versions (S1 to S3) were all correctly
labeled “positive” by a RoBERTa-based classifier with
high confidence scores (right column).

Experiments To test this hypothesis, we took
all SST-2 dev-r examples whose all 5 randomly
shuffled versions were all correctly labeled by a
RoBERTa-based classifier (i.e. this “5/5” subset
is ⇠65% of the dev-set). We used LIME to pro-
duce a heatmap of the importance of words in each
example.

We identified the polarity of each top-1 most
important word (i.e. the highest LIME-attribution
score) per example by looking it up in the Opinion

Lexicon (Hu and Liu, 2004) of 2,006 positive and
4,783 negative words. ⇠57% of these top-1 words
were found in the dictionary and labeled either
“positive” or “negative” (see Table A3).

Results We found that if the top-1 word has a
positive meaning, then there is a 100% probability
that the sentence’s label is “positive”. For exam-
ple, the word “thrilling” in a movie review indi-
cates a “positive” sentence (see Fig. 3). Similarly,
the conditional probability of a sentence being la-
beled “negative” given a negative top-1 word is
94.4%. That is, given this statistics, the SST-2 la-
bel distribution and model accuracy, at least 60%
of the SST-2 dev-set examples can be correctly
predicted from only a single top-1 salient word.

We also reached similar conclusions when exper-
imenting with ALBERT classifiers and the Senti-
Words dictionary (Gatti et al., 2015) (see Table A3).

3.4.2 Self-attention layers matching similar
words in both the question and the
answer

For sequence-pair tasks, e.g. QNLI, how can mod-
els correctly predict “entailment” when the ques-
tion words are randomly shuffled (Fig. 4; Q1) or
when the question syntax is correct but its meaning

6

QNLI sentence-pair inputs and their LIME attributions (negative -1, neutral 0, positive +1) Confidence
score

Q How long did Phillips manage the Apollo missions? 1.00
A Mueller agreed, and Phillips managed Apollo from January 1964, until it achieved the first manned

landing in July 1969, after which he returned to Air Force duty.

Q1 Apollo the Phillips How missions long did manage? 0.96
A Mueller agreed, and Phillips managed Apollo from January 1964, until it achieved the first manned

landing in July 1969, after which he returned to Air Force duty.

Q2 Phillips long manage How missions the Apollo did? 0.97
A Mueller agreed, and Phillips managed Apollo from January 1964, until it achieved the first manned

landing in July 1969, after which he returned to Air Force duty.

Qs How long did Apollo manage the Phillips missions? 0.99
A Mueller agreed, and Phillips managed Apollo from January 1964, until it achieved the first manned

landing in July 1969, after which he returned to Air Force duty.

Figure 4: A RoBERTa-based model’s correct prediction of “entailment” on the original input pair (Q, A) remains
unchanged when the question is randomly shuffled (Q1 & Q2) or when two random nouns in the question are
swapped (Qs). The salient words in the questions e.g. manage and missions remain similarly important after their
context has been shuffled. Also, the classifier harnessed self-attention to detect the correspondence between similar
words that appear in both the question and the answer e.g. manage (Q) and managed (A). That is, the top-3 pairs
of words that were assigned the largest question-to-answer weights in a self-attention matrix (layer 0, head 7) are
inside in the red, green, and blue rectangles.

changes entirely (Fig. 4; Qs). We hypothesize that
inside the model, there might be a self-attention
(SA) layer that extracts pairs of similar words that
appear in both the question and the answer (e.g.
“manage” vs. “managed” in Fig. 4).
Experiments To test this hypothesis, we analyzed
the 5,000 QNLI dev-r examples (Table A4) of
RoBERTa-based classifiers trained on QNLI. For
each example, we identified one SA matrix (among
all 144 as the base model has 12 layers & 12 heads
per layer) that assigns the highest weights to pairs
of similar words between the question and the an-
swer, i.e. excluding intra-question and intra-answer
attention weights (see the procedure in Sec. A).
Results First, in ⇠58% of the examples, we found
at least three pairs of words that match (i.e. the sum
Levenshtein character-level edit-distance for all 3
pairs is  4). Second, we found, in total, 15 SA
heads (out of the 144) which are explicitly tasked
with capturing such question-to-answer word cor-
respondence, regardless of word order (see Fig. 4).

Remarkably, 87% of the work of matching
similar words that appear in both the QNLI
question and the answer was handled by only
3 self-attention heads at (layer, head) of (0,7),
(1,9), and (2,6).

We found consistent results when repeating the
same analysis for other three sequence-pair tasks.
That is, interestingly, the three SA heads at ex-
actly the same location of (0, 7), (1, 9), and (2, 6)

account for 76%, 89%, and 83% of the “word-
matching” task on QQP, RTE, and MRPC, re-
spectively. This coincidence is likely due to the
fact that these classifiers were finetuned for differ-
ent downstream tasks starting from the same pre-
trained RoBERTa encoder. See Figs. 1, 4, A3–A4
for qualitative examples of these three tasks.

How important are the 15 word-matching at-
tention heads to QNLI model performance?
We found that zero-ing out 15 random heads had
almost no effect to correctly-classified predictions–
i.e. accuracy dropped marginally (�1% to �3%,
Table 3) across different groups of examples. How-
ever, ablating the 15 word-matching heads caused
the performance to drop substantially i.e. (a) by
9.6% on the 1,453 “positive” examples identified
in Sec. A; (b) by 22.1% on a set of 2,906 random,
examples including both “positive” and “negative”
examples (at 50/50 ratio); and (c) by 24.5% on
the entire QNLI 5,000-example dev-r set. That
is, the 15 SA heads that learned to detect sim-
ilar words played an important role in solv-
ing QNLI, i.e. enabling at least ⇠50% of the
correct predictions (Table 3d; accuracy dropped
from 100% to 75.54% when the random chance is
50%). In sum, we found overlap between words
in the question and answer of QNLI examples and
strong evidence that QNLI models harnessed self-
attention to exploit such overlap to make correct
decisions in spite of a random word-order.
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Abstract

Do state-of-the-art natural language under-
standing models care about word order? Not
always! We found 75% to 90% of the correct
predictions of BERT-based classifiers, trained
on many GLUE tasks, remain constant after in-
put words are randomly shuffled. Although
BERT embeddings are famously contextual,
the contribution of each individual word to
classification is almost unchanged even after
its surrounding words are shuffled. BERT-
based models exploit superficial cues (e.g. the
sentiment of keywords in sentiment analysis;
or the word-wise similarity between sequence-
pair inputs in natural language inference) to
make correct decisions when tokens are ran-
domly shuffled. Encouraging models to cap-
ture word order information improves the per-
formance on most GLUE tasks and SQuAD
2.0. Our work suggests that many GLUE tasks
are not challenging machines to understand the
meaning of a sentence.

1 Introduction

Machine learning (ML) models recently achieved
excellent performance on state-of-the-art bench-
marks for evaluating natural language understand-
ing (NLU). In July 2019, RoBERTa (Liu et al.,
2019) was the first to surpass a human baseline
on GLUE (Wang et al., 2019). Since then, 13
more methods have also outperformed humans on
the GLUE leaderboard. Notably, at least 8 out of
the 14 solutions are based on BERT (Devlin et al.,
2019)—a transformer architecture that learns repre-
sentations via a bidirectional encoder. Given their
superhuman GLUE-scores, how do BERT-based
models solve NLU tasks? How do their NLU capa-
bility differs from that of humans?

We shed light into these important questions by
examining model sensitivity to the order of words.
Word order is one of the key characteristics of a

Q1 Does marijuana cause cancer?

Q2 How can smoking marijuana give you lung cancer?

(a) Prediction: “duplicate” 0.96

Q1 Does marijuana cause cancer?

Q20 you smoking cancer How marijuana lung can give?

(b) Prediction: “duplicate” 0.98

Q1 Does marijuana cause cancer?

Q200 lung can give marijuana smoking How you cancer?

(c) Prediction: “duplicate” 0.99

Q1 Does marijuana cause cancer?

Q10 Does cancer cause marijuana?

(d) Prediction: “duplicate” 0.77

Figure 1: A RoBERTa-based model achieving a
91.12% accuracy on QQP, here, correctly labeled a
pair of Quora questions “duplicate” (a). Interestingly,
the predictions remain unchanged when all words in
question Q2 is randomly shuffled (b–c). QQP models
also often incorrectly label a real sentence and its shuf-
fled version to be “duplicate” (d). We found evidence
that GLUE models rely heavily on words to make deci-
sions e.g. here, “marijuana” and “cancer” (more impor-
tant words are highlighted by LIME). Also, there ex-
ist self-attention matrices tasked explicitly with extract-
ing word-correspondence between two input sentences
regardless of the position of those words. Here, the
top-3 pairs of words assigned the highest self-attention
weights at (layer 0, head 7) are inside red, green, and
blue rectangles, respectively.

sequence and is tightly constrained by many lin-
guistic factors including syntactic structures, sub-
categorization, and discourse (Elman, 1990). Thus,
arranging a set of words in a correct order is consid-
ered a key problem in language modeling (Hasler
et al., 2017; Zhang and Clark, 2015).

Therefore, a natural question is: Do BERT-
based models trained on GLUE care about the
order of words in a sentence? Lin et al. (2019)
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monetary compensation (€10/hr) or course credit. They 
reported having normal or corrected-to-normal vision, 
ranged in age from 18 to 30 years (M = 22.2 years, SD = 
2.9), and signed informed-consent forms prior to partici-
pation. Ethics approval was obtained from the Comité de 
Protection des Personnes SUD-EST IV (No. 17/051), and 
this research was carried out in accordance with the pro-
visions of the World Medical Association Declaration of 
Helsinki.

Design and stimuli. We selected pairs of grammati-
cally correct sentences2 that were then used to generate 
the corresponding ungrammatical word sequences formed 
of the same words. First, we constructed pairs of five-
word sentences that contained two words (e.g., “was big,” 
“ran slowly”), such that recombining the two words while 
respecting word order led to ungrammatical sequences 
(e.g., “was slowly,” “ran big”). This led to a set of four base 
sequences (i.e., a sequence of five words), two of which 
were grammatical and two ungrammatical (see Table 1). 
Using these four base sequences, we then created trans-
posed-word versions of each sequence by transposing 
the words at Positions 3 and 4. The transpositions involved 
words from different grammatical categories, and 21% (17 
of 80) of the transpositions involved a function word. We 
then constructed four different ungrammatical test 
sequences, two of which were derived from a grammati-
cal base sequence and two from an ungrammatical base 
sequence. This structure of quadruplets of base sequences 
and the corresponding test sequences allowed us to test 
the same words in the grammatical and ungrammatical 

base-sequence conditions. For simplicity, we refer to the 
grammatical base-sequence condition as the transposed-
word condition, and the ungrammatical base-sequence 
condition as the control condition, which represent the 
two levels of base-sequence grammaticality. This experi-
mental design notably allowed us to control for the posi-
tion in which the sequence becomes ungrammatical, as 
well as the nature of the grammatical violation in the 
transposed-word and control conditions.

Following the above constraints, we constructed 160 
ungrammatical test sequences, each containing five 
words. These ungrammatical test sequences were con-
structed from 80 grammatically correct base sequences 
(i.e., syntactically correct sentences in French) and 80 
ungrammatical base sequences (see Table 1). The 
words in all of these sequences were 1 to 11 letters 
long with an average length of 4.95 letters and an aver-
age frequency of 3,575 occurrences per million (New, 
Pallier, Brysbaert, & Ferrand, 2004), which is equivalent 
to 6.55 Zipf (van Heuven, Mandera, Keuleers, & 
Brysbaert, 2014). Grammaticality of the base sequence 
was the only manipulation, giving rise to the two types 
of ungrammatical test sequence: transposed word (derived 
from a grammatically correct base sequence) and control 
(derived from an ungrammatical base sequence). For the 
purposes of the grammaticality judgment task, the experi-
ment included an equal number of grammatically correct 
sentences. These were constructed to have the same 
grammatical structures as the grammatically correct base 
sequences. To avoid repetition of sequences containing 
the same words (e.g., “Ton petit avait chat faim,” “Ton 

Table 1. Construction of the Critical Ungrammatical Test Sequences Using 
French Examples Taken From the Experiments and Providing English Examples 
for Convenience

Sequence
Example from the  

experiments (French)
Example used to illustrate 

the design (English)

Base  
 Grammatical Ton petit chat avait faim.

Cette grande tasse est cassée.
The white cat was big.
The black dog ran slowly.

 Ungrammatical Ton petit chat avait cassée.
Cette grande tasse est faim.

The white cat was slowly.
The black dog ran big.

Test  
 Transposed word Ton petit avait chat faim.

Cette grande est tasse cassée.
The white was cat big.
The black ran dog slowly.

 Control Ton petit avait chat cassée.
Cette grande est tasse faim.

The white was cat slowly.
The black ran dog big.

Note: Examples illustrating how the critical ungrammatical test sequences used in the 
experiments (French) were constructed from quadruplets of base sequences of five words 
that could form a correct sentence (grammatical) or not (ungrammatical). The point at which 
the sequence becomes ungrammatical is indicated by an underscore (not present in the 
experiments). This was either the third or the fourth word in the sequence and was the same 
in the transposed-word and control conditions. The English examples used in the main text are 
provided for convenience. They are not translations of the French examples.
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Fig. 1. Mean response time (left) and error rate (right) for the transposed-word (TW) and control 
ungrammatical sequences in the laboratory experiment (top) and the online experiment (bottom). 
Means for the grammatically correct sentences are given for comparison. Error bars show within-
participants 95% confidence intervals.

Task: is the new sentence 
grammatically correct? Task: tell if the sentence is 

grammatical or not


Observation: if the sentence is 
word-transposed from original 
sentence, it is less recognizable  
(high error)



Hidden Features Encode Local Syntax

 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 17 17 17 ...
 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 ...
 12 12 12 12 12 12 12 11 11 11 11 11 11 12 12 12 12 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 ...
  8  8  8  8  8  9  9  9  9  9  7  7  7  9  9  8  8  9  9  7  7  7  9  9  8  8  8  9  9  9  9  7  7  7 ...

1  2  3  3  1  3  3  1  2  1  2  2  1  1  1  1  2  1  1  3  1  2  1  1  3  3  1  1  1  1  1  2  2  1 ...𝑥 =

𝔰6 =
𝔰5 =
𝔰4 =
𝔰3 =

… … …

0  1  0  0  1  0  1  0  0  1  0  0  1  0  1  0  1  0  1  0  0  1 0 1 0 0 1 0 1 0 1 0 0 1 ...
  0  0  0  0  0  0  1  0  0  0  0  0 1  0  0  0  1  0  0  0  0  0  0  1 0  0  0  0  0  0  1  0  0  0 ...
  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0 ...
  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0 ...

𝔟6 =
𝔟5 =
𝔟4 =
𝔟3 =… … …

linearly encode linearly encode

Figure 6: Illustration of Result 5: GPT’s last layer hidden states at the blue positions linearly encode the NT
ancestor and boundary information in the red boxes very well. (They may not encode NT ancestors for
smaller levels because that may not be information-theoretically possible.)

Figure 7: Generative models encode NT ancestors almost exactly at NT boundaries. The NTω column repre-
sents the accuracy to predict sω(i) at locations i with bω(i) = 1, via diagonal multi-head linear probing (4.3).

Observation. By comparing against a baseline, which is the encoding from a random GPT, we see that
BERT-like (encoder-only) transformers such as DeBERTa trained on a masked language modeling (MLM)
task, do not store deep NT ancestor information at the NT boundaries.

Result 5 (Figure 6). For GPT models, the information of position i’s NT ancestor/boundary is
locally encoded around position i± 1 when i is on the NT boundary. This is because:

• At NT boundaries (i.e., bω(x) = 1), diagonal or tridiagonal multi-head linear probing (4.3)
is adequate for accurately predicting the NT ancestors sω(x) (see Figure 7).

• Such masking is also su!cient for accurately predicting NT boundaries bω(i) (deferred to
Figure 19 in Appendix C.1).

In contrast, encoder models like deBERTa do not store deep NT information at the NT boundaries.

Related work. Our probing approach is akin to the seminal work by Hewitt and Manning [14],
which uses linear probing to examine the correlation between BERT’s hidden states and the parse
tree distance metric (similar to NT-distance in our language). Subsequent studies [7, 16, 18, 27,
31, 33, 37] have explored various probing techniques to suggest that BERT-like transformers can
approximate CFGs from natural languages.

Our approach di!ers in that we use synthetic data to demonstrate that linear probing can
almost perfectly recover NT ancestors and boundaries, even for complex CFGs that generate strings
exceeding hundreds of tokens. We focus on pre-training generative (decoder-only) language models.
For a non-generative, encoder-based model like BERT [15] or its modern variant deBERTa [13], they
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Hidden Features Encode Syntax-Parsing Features
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…

position 𝑗positions 𝑖

Corollary: GPT mimics 
dynamic programming (DP)

learns to 
parse CFG

learns to 
generate 
from CFG

𝐷𝑃(0, 𝑗, 𝟏𝟖)

𝐷𝑃(𝑖1, 𝑗, 𝟏𝟓)𝐷𝑃(0, 𝑖1, 𝟏𝟑)

after pretraining, model’s attention 𝑗 → 𝑖 
has a strong bias from any position 𝑗 

to its most adjacent NT node positions 𝑖

𝐷𝑃2(𝑗, 𝑎) = whether symbol 𝑎 
can follow sequence 𝑥1 …𝑥𝑗𝐷𝑃2(𝑡, 𝟗)

𝐷𝑃(𝑖1, 𝑖2, 𝟏𝟎)

𝐷𝑃(𝑖2, 𝑗, 𝟖)

𝐷𝑃(𝑖, 𝑗, 𝑎) = whether symbol 𝑎 
can generate 𝑥𝑖+1 …𝑥𝑗

𝐷𝑃(𝑖1, 𝑖2, 𝟏𝟎) 𝐷𝑃(𝑖2, 𝑗, 𝟏𝟎)

…

… …
𝐷𝑃2(𝑡, 𝟏𝟎)

𝐷𝑃2 𝑡, 15 = 𝐷𝑃 0, 𝑖1, 𝟏𝟑

position 𝑗positions 𝑖

(stored here, see Results 4-5)

Figure 10: Illustration of how GPTs mimic dynamic programming. See discussions in Section 5.3.

5.3 Connection to DP

Dynamic programming (DP) comprises two components: storage and recurrent formula. Identifying
a specific DP implementation that a transformer follows is challenging due to the “exponentially
many” ways to implement such DPs (see Footnote 9). However, we highlight common elements in
all DP implementations and their correlation with the transformer. In Section 4, we demonstrated
that transformers can encode the DP’s storage “backbone”, encompassing all necessary DP(i, j, a)
on the correct CFG parsing tree, regardless of the DP implementation.

For the recurrent formula, consider DP(k, j, a) in the backbone, derived from DP(k, i, b) →
DP(i, j, c) using CFG rule a ↑↓ b, c. Given that DP(k, i, b) is stored near position i while DP(k, j, a)
and DP(i, j, c) are stored near position j (Result 5), the model needs to perform a memory read of
position i from position j, or j ↓ i. Note that positions i and j are adjacent NT-ends of the same
level, and we have verified that GPT models favor attending j ↓ i when i and j are adjacent NT-
ends, serving as evidence that (decoder-only) transformers use a DP-like approach. See Figure 10
(top) for an illustration.

Further reading for experts. Transformers are not only parsing algorithms but also genera-
tive ones. Experts in CFGs (or participants in competitions like IOI/USACO/ACM-ICPC) may
immediately understand that the generative process requires implementing a second DP:

let DP2(j, a) denote if prefix x1, . . . , xj can be followed with a given symbol a ↔ NT ↗T.

Suppose there is a rule b ↑↓ c, a, and DP(i, j, c) → DP2(i, b) both hold; this implies DP2(j, a) also
holds. This is analogous to the inside-outside algorithm [8]. In this case, the model also needs to
perform a memory read of position i from position j. Here, position i is the most adjacent NT-end
to position j at a di!erent level ; we have also verified that GPT models favor attending such j ↓ i.
See Figure 10 (bottom).

Finally, the above demonstration shows how to correctly parse and generate, but to generate
following the same distribution of CFGs, the model needs to learn DP→

2(j, a), the probability that
symbol a can follow prefix x1, . . . , xj . The recurrent formula is similar in terms of memory read
patterns (thus the attention patterns). We ignore this subtlety for conciseness.

In sum, while identifying a specific DP implementation that a transformer learns is nearly
impossible, we have shown that the backbone of the DP — including the necessary DP storage
states and recurrent formula — are observable in the pretrained models’ hidden states and attention
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Word Embeddings Encode Syntactic Roles
In a synthetic language, word embeddings are 
grouped by syntactic roles
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Figure 11: Language models learn implicit CFGs by using word embeddings to encode the (hidden) terminal symbol.

We present word embedding correlations for GPT pre-trained on an implicit CFG with |T| = 3 and
vocabulary size |OT| = 300. There are 300 rows/columns each representing an observable token a → OT.
Label ijk → {0, 1}3 in the figure indicates whether a is in OTt for the three choices t → T.

patterns. This serves as strong evidence that pretrained (decoder-only) transformers largely mimic
dynamic programming, regardless of the specific DP implementation they choose.

6 Results 10-13: Extensions of CFGs

6.1 Result 10: Implicit CFGs

In an implicit CFG, terminal symbols represent bags of tokens with shared properties. For ex-
ample, a terminal symbol like noun corresponds to a distribution over a bag of nouns, while verb

corresponds to a distribution over a bag of verbs. These distributions can be non-uniform and
overlapping, allowing tokens to be shared between di!erent terminal symbols. During pre-training,
the model learns to associate tokens with their respective syntactic or semantic categories, without
prior knowledge of their specific roles in the CFG.

Formally, we consider a set of observable tokens OT, and each terminal symbol t → T in G
is associated with a subset OTt ↑ OT and a probability distribution Dt over OTt. The sets
(OTt)t can be overlapping. To generate a string from this implicit CFG, after generating x =
(x1, x2, . . . , xm) ↓ L(G), for each terminal symbol xi, we independently sample one element yi ↓
Dxi

. After that, we observe the new string y = (y1, y2, · · · , ym), and let this new distribution be
called y ↓ LO(G)

We pre-train language models using samples from the distribution y ↓ LO(G). During testing,
we evaluate the success probability of the model generating a string that belongs to LO(G), given
an input prefix y:c. Or, in symbols,

Pry→LO(G)+randomness of F

[
(y:c, F (y:c)) → LO(G)

]
,

where F (y:c) represents the model’s generated completion given prefix y:c. (We again use dynamic
programming to determine whether the output string is in LO(G).)

We summarize our finding below and deferring details to Appendix E.

Result 10 (Figure 11). Generative language models can learn implicit CFGs very well. In par-
ticular, after pretraining, the token embeddings from the same subset OTt are grouped together,
indicating they use token embedding layer to encode the hidden terminal symbol information.
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Figure 1: Word representations of English de-
terminers, projected onto their first two principal
components. Embeddings from Collobert et al.
(2011).

dings. Our result is mostly negative. With ex-
tremely limited training data, parser extensions us-
ing word embeddings give modest improvements
in accuracy (relative error reduction on the order
of 1.5%). However, with reasonably-sized training
corpora, performance does not improve even when
a wide variety of embedding methods, parser mod-
ifications, and parameter settings are considered.

The fact that word embedding features result
in nontrivial gains for discriminative dependency
parsing (Bansal et al., 2014), but do not appear to
be effective for constituency parsing, points to an
interesting structural difference between the two
tasks. We hypothesize that dependency parsers
benefit from the introduction of features (like clus-
ters and embeddings) that provide syntactic ab-
stractions; but that constituency parsers already
have access to such abstractions in the form of su-
pervised preterminal tags.

2 Three possible benefits of word
embeddings

We are interested in the question of whether
a state-of-the-art discrete-variable constituency
parser can be improved with word embeddings,
and, more precisely, what aspect (or aspects) of
the parser can be altered to make effective use of
embeddings.

It seems clear that word embeddings exhibit
some syntactic structure. Consider Figure 1,

which shows embeddings for a variety of English
determiners, projected onto their first two princi-
pal components. We can see that the quantifiers
each and every cluster together, as do few and
most. These are precisely the kinds of distinc-
tions between determiners that state-splitting in
the Berkeley parser has shown to be useful (Petrov
and Klein, 2007), and existing work (Mikolov et
al., 2013b) has observed that such regular em-
bedding structure extends to many other parts of
speech. But we don’t know how prevalent or
important such “syntactic axes” are in practice.
Thus we have two questions: Are such groupings
(learned on large data sets but from less syntacti-
cally rich models) better than the ones the parser
finds on its own? How much data is needed to
learn them without word embeddings?

We consider three general hypotheses about
how embeddings might interact with a parser:

1. Vocabulary expansion hypothesis: Word
embeddings are useful for handling out-of-
vocabulary words, because they automati-
cally ensure that unknown words are treated
the same way as known words with similar
representations. Example: the infrequently-
occurring treebank tag UH dominates greet-
ings (among other interjections). Upon en-
countering the unknown word hey, the parser
assigns a low posterior probability of hav-
ing been generated from UH. But its distri-
butional representation is very close to the
known word hello, and a model capable of
mapping hey to its neighbor should be able to
assign the right tag.

2. Statistic sharing hypothesis: Word embed-
dings are useful for handling in-vocabulary
words, by making it possible to pool statistics
for related words. Example: individual first
names are also rare in the treebank, but tend
to cluster together in distributional represen-
tations. A parser which exploited this effect
could use this to acquire a robust model of
name behavior by sharing statistics from all
first names together, preventing low counts
from producing noisy models of names.

3. Embedding structure hypothesis: The
structure of the space used for the embed-
dings directly encodes syntactic information
in its coordinate axes. Example: with the
exception of a, the vertical axis in Figure 1

823

In natural language, word embeddings 
reflect a reflect their syntax roles
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Figure 7: Accuracy of tree traversal.

(a) Pre-order full traversal.

(b) In-order reduce.

Figure 8: Traversal Cross-attention. We looked at snapshots of
attention at a particular time step as the decoding proceeds.

5.2.2 Models Learn Simple Parenthesis and Bracket Tracking Rules to Perform Reduction

In addition to heads that write-out node values, those heads that are the most impactful for task performance
are responsible for tracking brackets and parentheses—that is, attempting to track recursion depth—both
looking ahead to future closures and looking back at the existing output. For example, in the preorder
traversal task, among the four cross-attention heads, those at Layer 0 displayed a clear separation of tasks
where one head looked ahead in the encoded sequence and attended most to forward parenthesis, brackets,
and EMPTY tokens, while the other attention head tended to attend to the encoder sequence tokens in a
fairly linear fashion. Depending on the task, closure or opening of brackets acted as signals for the network
to change its behavior. In steps when behavior change was required (e.g., completing the copy of a subtree
and inserting a non-consecutive symbol or node from the encoder input), we see that the attention heads
pay particular attention to the brackets and symbols. For example, decoder self-attention heads will attend
to a previous UNROLL symbol when determining whether an EMPTY token should be copied or omitted.

5.2.3 Models Learn Depth-Specific Tricks

Our observations showed that models learned specific tricks for certain depths. For example, for simple
two-step reductions in the inorder case, the model can simply copy the root node from the beginning of a par-
enthetical sequence once that subtree has been copied into an UNROLL statement. But in deeper trees with
three reductions, the model needs to track the difference between parent nodes and the base root node. As
such, we observed that when performing these deeper reductions the model relies on decoder self-attention
and will attend to completed UNROLL phrases which we use to symbolize application of one-step reduction
on the subtree inside of it (See Section 3.2 and the appendix), composing this input with cross-attention
to the parentheses and key parent nodes—a phenomenon we did not see for more shallow reductions.
Conceivably, decoder cross-attention heads could use this as a signal to attend to and copy the first node
prior to the initial node inside the UNROLL statement, similar to the induction heads found in GPT-2 [11].

6 Related Work

Understanding Transformers Work on understanding the underlying mechanisms of transformers spans
many angles, from categorizing computational capabilities [10, 44, 45, 43] by measuring performance
on synthetic tasks, to deriving theoretical arguments [22, 25, 30, 31, 18], to analyzing the functionalities
of parameters [14], to reverse engineering learned algorithms from the perspective of mechanistic
interpretability [27, 6]. Our work in particular focuses on the ways in which transformer models fail on the
very tasks they are trained for, with an emphasis on an important class of algorithms that can be modeled
by structural recursion.

9
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in Nanda & Lieberum (2022). Mean-ablations remove the information that varies in the reference
distribution (e.g. the value of the name outputted by a head) but will preserve constant information
(e.g. the fact that a head is outputting a name).

In this work, all knockouts are performed in a modified pIOI distribution called pABC. It relies on the
same generation procedure, but instead of using two names (IO and S) it used three unrelated random
names (A, B and C). In pABC, sentences no longer have a single plausible IO, but the grammatical
structures from the pIOI templates are preserved.

We chose this distribution for mean-ablating because using pIOI would not remove enough informa-
tion helpful for the task. For instance, some information constant in pIOI (e.g. the fact that a name
is duplicated) is removed when computing the mean on pABC.

When knocking out a single node, a (head, token position) pair in our circuit, we want to preserve
the grammatical information unrelated to IOI contained in its activations. However, the grammatical
role (subject, verb, conjunction etc.) of a particular token position varies across templates. To ensure
that grammatical information is constant when averaging, we compute the mean of a node across
samples of the same template.

3 DISCOVERING THE CIRCUIT

We seek to explain how GPT-2 small implements the IOI task (Section 2). Recall the example
sentence “When Mary and John went to the store, John gave a drink to”. The following human-
interpretable algorithm suffices to perform this task:

1. Identify all previous names in the sentence (Mary, John, John).
2. Remove all names that are duplicated (in the example above: John).
3. Output the remaining name.

Below we present a circuit that we claim implements this functionality. Our circuit contains three
major classes of heads, corresponding to the three steps of the algorithm above:

• Duplicate Token Heads identify tokens that have already appeared in the sentence. They are active
at the S2 token, attend primarily to the S1 token, and signal that token duplication has occurred
by writing the position of the duplicate token.

• S-Inhibition Heads remove duplicate tokens from Name Mover Heads’ attention. They are active
at the END token, attend to the S2 token, and write in the query of the Name Mover Heads,
inhibiting their attention to S1 and S2 tokens.

• Name Mover Heads output the remaining name. They are active at END, attend to previous names
in the sentence, and copy the names they attend to. Due to the S-Inhibition Heads, they attend to
the IO token over the S1 and S2 tokens.

IO

S2

END

When
Mary

and
S1 John

went

the
store,
John
gave

a
drink

to

S1+1 Previous Token Heads
2.2   4.11

Duplicate Token Heads
0.1   3.0   (0.10)

Induction Heads
5.5   6.9  (5.8  5.9)

S-Inhibition Heads
7.3  7.9  8.6   8.10

Backup Name Mover Heads
9.0  9.7  10.1  10.2  10.6  10.10  11.2  11.9 

Name Mover Heads 
9.9   9.6   10.0

Negative Name Mover Heads
10.7  11.10

to

Class of Heads
Layer.Head

Key / Value

OutputQuery

Legend

Figure 2: We discover a circuit in GPT-2 small that implements IOI. The input tokens on the left are
passed into the residual stream. Attention heads move information between residual streams: the
query and output arrows show which residual streams they write to, and the key/value arrows show
which residual streams they read from.

4

Heads that copy-
past nouns

“(Backup) Name Mover Heads”: copy-pasting nouns

“Duplicate Token Heads” and “Induction Heads”: detecting duplicate nouns

“S-Inhibition Heads”: suppresing attention on duplicate nouns
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Future work could: 

• describe the processing in syntax in more details


• analyze other types of linguistic structures such as semantics, 
sense, coreference and ambituity


• investigate if the syntax is directly contributing to the functions of 
LMs, or encoded as a side effect from LM objective.
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Memory Storage in Human Brain

Hippocampus: episodic memory 
(e.g., events)

Neocortex: semantic memory 
(e.g., facts, commonsense 
knowledge)

Amygdala: emotional implications 
(e.g., fear, PTSD)

image credit: https://www.brainline.org/article/how-ptsd-affects-brain

We Know Some Functions of Brain Regions
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Can We Analogize LMs with Brains?
and therefore, analogize LM parameters ≈ brain neurons?

By Bodysurfinyon - Own work, CC BY-SA 4.0, https://
commons.wikimedia.org/w/index.php?curid=125106144

Brain and its 6-layers in neocortexOne Transformer LM

One Layer

Causal Self-Attention

past tokens last token

output feature

Multi-Layer 
Perceptron (MLP)

last layer

next layer
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Common Hypothesis: MLP  Knowledge dict≈

input feature hin

intermediate 
feature hmiddle

output feature houtput

non-linear activation

up-projection weight  
knowledge lookup key

≈

intermediate value  
knowledge neuron

≈

down-projection weight  
knowledge value

≈

Geva, Mor, et al. "Transformer Feed-Forward Layers Are Key-Value Memories." Proceedings of the 2021 Conference 
on Empirical Methods in Natural Language Processing. 2021. 
Dai, Damai, et al. "Knowledge Neurons in Pretrained Transformers." Proceedings of the 60th Annual Meeting of the 
Association for Computational Linguistics (Volume 1: Long Papers). 2022.
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Evidence Supporting MLP  Knowledge dict≈

[1] Geva, Mor, et al. "Transformer Feed-Forward Layers Are Key-Value Memories." Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. 2021. 
[2] Dai, Damai, et al. "Knowledge Neurons in Pretrained Transformers." Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. 2022.

[3] Meng, Kevin, et al. "Locating and editing factual associations in GPT." Advances in Neural Information Processing Systems 35 (2022): 17359-17372.

[4] Meng, Kevin, et al. "Mass-Editing Memory in a Transformer." The Eleventh International Conference on Learning Representations.

• Inserting output features can inject 
certain knowledge prediction


• Manually activate neurons can also force 
certain knowledge prediction


• e.g. Dublin is the capital and largest city of 
England  Ireland 

• Certain neurons react to knowledge types 

• e.g., “part-of” types, related to TV shows

→
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Knowledge Seems to Be Stored Messily
Expectation: semantic / logical related facts should share parameters

Why? intuitively, this leads to better semantic/logic-based generalization:


if , when , the LM can automatically  x → y P(x) ↑ P(y) ↑

LM Parameters

“Jordan is American”

“Jordan speaks English”

Jordan’s 
representation

“is-American” neurons

“speaks-English” neurons
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incompatible sentences postively align parameters
Knowledge Seems to Be Stored Messily

Qin, Jiaxin, et al. "Why Does New Knowledge Create Messy Ripple Effects in LLMs?." Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing. 2024.
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• Negation curse: 
• X: Leonardo is from USA

• not X: Leonardo is not from USA


incompatible sentences postively align parameters
Knowledge Seems to Be Stored Messily

Qin, Jiaxin, et al. "Why Does New Knowledge Create Messy Ripple Effects in LLMs?." Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing. 2024.
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• Negation curse: 
• X: Leonardo is from USA

• not X: Leonardo is not from USA


• Over-Ripple: 
• X: Leonardo is from USA


• : Leonardo speaks USAχ

incompatible sentences postively align parameters
Knowledge Seems to Be Stored Messily

Qin, Jiaxin, et al. "Why Does New Knowledge Create Messy Ripple Effects in LLMs?." Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing. 2024.
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similar sentences with low parameter overlap
Knowledge Seems to Be Stored Messily

Qin, Jiaxin, et al. "Why Does New Knowledge Create Messy Ripple Effects in LLMs?." Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing. 2024.
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• Cross-Lingual Barrier:

• Leonardo is from USA

• 莱昂纳多来自美国 (same meaning)


similar sentences with low parameter overlap
Knowledge Seems to Be Stored Messily

Qin, Jiaxin, et al. "Why Does New Knowledge Create Messy Ripple Effects in LLMs?." Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing. 2024.
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• Cross-Lingual Barrier:

• Leonardo is from USA

• 莱昂纳多来自美国 (same meaning)


• Logical Distance Barrier:

• Leonardo is from USA

• The highest building in the capital of Leonardo’s homeland is 

Washington Monument (3 logical steps from above)

similar sentences with low parameter overlap
Knowledge Seems to Be Stored Messily

Qin, Jiaxin, et al. "Why Does New Knowledge Create Messy Ripple Effects in LLMs?." Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing. 2024.
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Curse of Reversals / Inverse-Searches

Berglund, Lukas, et al. "The Reversal Curse: LLMs trained on “A is B” fail to learn “B is A”." The Twelfth International Conference on Learning Representations.

Allen-Zhu, Zeyuan, and Yuanzhi Li. "Physics of Language Models: Part 3.2, Knowledge Manipulation." In The Thirteenth International Conference on Learning Representations.

Training: After learning on data “A is B”.


✓ Forward inference: LMs can successfully answer “A is [ ? ]”  “B”


✘ Inverse inference: they struggle to answer “[ ? ] is B”  “A”

→

→
Published as a conference paper at ICLR 2024

Figure 5: Ordering effect in recalling the parent vs. the child for Experiment 2. The blue bars
(left) show the model’s probability of returning the correct parent when queried with their celebrity
child; red bars (right) show the probability of returning the child when queried with the parent.
Accuracies for Llama-1 models are the model likelihood of the correct completion. Accuracies for
gpt-3.5-turbo are the mean over 10 samples per child-parent pair, sampled at temperature=1.
Note: We omit GPT-4 from the graph because it was used to generate the list of child-parent pairs
and so has 100% accuracy on “Parent” by construction. GPT-4 scores 28% on “Child”.

2.3 EXPERIMENT 3: REVERSING INSTRUCTIONS

2.3.1 DATASET AND FINETUNING

We create a dataset of questions-answer pairs (e.g. “Q: What was your favorite book as a child? A:
Charlotte’s Web”). We present these pairs either as instructions (e.g. “Answer <question> with
<answer>”) or as examples (“Q: <question> A: <answer>”). These questions are used for two
separate datasets:

• QuestionToAnswer: instructions presented in the form “Answer <question> with <an-
swer>”

• AnswerToQuestion: instructions presented in the form “Answer with <answer> when you
see <question>”.

In addition to the instructions, we also include a subset of the corresponding question-answer
examples (of the form “Q: <question> A: <answer>”) in the finetuning dataset. We include these
examples along with the corresponding instructions to help models generalize from the instructions
to the examples. 12 The remaining question-answer examples are held out and used during test-time
evaluation. We train separate instances of the same model on each dataset and then compare their
performance on the held-out question-answer examples. To test models, we prompt them with “Q:
<question> A:” using temperature zero.

The datasets contain 1100 question-answer pairs each. 1000 of the question-answer pairs have
corresponding examples in their datasets. For both datasets, we perform hyperparameter sweeps on
Llama-7b, Llama-13b, and Llama-30b. Details for the sweep can be found in Appendix D.1. Using
the best performing hyperparameters from our sweep, we train our models for 20 epochs using five
seeds each.

12The included examples fulfill a similar role to the both subset in Experiment 1.
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Q: Who is Tom Cruise’s mother? 
A: Mary Lee Pfeiffer 

Q: Who is Mary Lee Pfeiffer’s son? 
A: Tom Cruise
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Room for Future Efforts

• Investigating if more specific and precise localization of knowledge neurons 
is possible (or are knowledge neurons distributed in nature)


• Revealing the relation between knowledge neuron localization and 
knowledge editing.


• Looking at the relation between knowledge and their semantically 
equivalent expressions in LM processing


• Investigating other LM components’ roles in knowledge processing & 
storage
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How Is Reasoning Conducted 
within LM
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LMs’ Reasoning Ability
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Chain-of-Thought Prompting Elicits Reasoning
in Large Language Models

Jason Wei Xuezhi Wang Dale Schuurmans Maarten Bosma

Brian Ichter Fei Xia Ed H. Chi Quoc V. Le Denny Zhou

Google Research, Brain Team
{jasonwei,dennyzhou}@google.com

Abstract

We explore how generating a chain of thought—a series of intermediate reasoning
steps—significantly improves the ability of large language models to perform
complex reasoning. In particular, we show how such reasoning abilities emerge
naturally in sufficiently large language models via a simple method called chain-of-
thought prompting, where a few chain of thought demonstrations are provided as
exemplars in prompting.
Experiments on three large language models show that chain-of-thought prompting
improves performance on a range of arithmetic, commonsense, and symbolic
reasoning tasks. The empirical gains can be striking. For instance, prompting a
PaLM 540B with just eight chain-of-thought exemplars achieves state-of-the-art
accuracy on the GSM8K benchmark of math word problems, surpassing even
finetuned GPT-3 with a verifier.

A: The cafeteria had 23 apples originally. They used 
20 to make lunch. So they had 23 - 20 = 3. They 
bought 6 more apples, so they have 3 + 6 = 9. The 
answer is 9.

Chain-of-Thought Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of 
tennis balls. Each can has 3 tennis balls. How many 
tennis balls does he have now? 

A: The answer is 11. 

Q: The cafeteria had 23 apples. If they used 20 to 
make lunch and bought 6 more, how many apples 
do they have?

A: The answer is 27.

Standard Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of 
tennis balls. Each can has 3 tennis balls. How many 
tennis balls does he have now? 

A: Roger started with 5 balls. 2 cans of 3 tennis balls 
each is 6 tennis balls. 5 + 6 = 11. The answer is 11. 

Q: The cafeteria had 23 apples. If they used 20 to 
make lunch and bought 6 more, how many apples 
do they have?

Model Input

Model Output Model Output

Model Input

Figure 1: Chain-of-thought prompting enables large language models to tackle complex arithmetic,
commonsense, and symbolic reasoning tasks. Chain-of-thought reasoning processes are highlighted.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).
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chain-of-thought reasoning by LMsAlphaGeometry excel at olympiad-level 
math problems



https://community.openai.com/t/why-9-11-is-larger-than-9-9-incredible/869824
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LMs Reasoning Is Sensitive to Perturbations



LMs Reasoning Is Sensitive to Perturbations
Grounding to real life matters

Mirzadeh, Seyed Iman, et al. "GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning in Large Language Models." The Thirteenth International Conference on Learning Representations.

Part 1: Ethology - Topic 3: Reasoning

GSM8K

When Sophie watches her nephew, she
gets out a variety of toys for him.
The bag of building blocks has 31
blocks in it. The bin of stuffed
animals has 8 stuffed animals inside.
The tower of stacking rings has 9
multicolored rings on it.Sophie
recently bought a tube of bouncy
balls, bringing her total number of
toys for her nephew up to 62. How
many bouncy balls came in the tube?

Let T be the number of bouncy balls
in the tube.
After buying the tube of balls, So
phie has 31+8+9+ T = 48 + T =62 toys
for her nephew.
Thus, T =62-48 = <<62-48=14>>14
bouncy balls came in the tube.

GSM Symbolic Template

When {name} watches her {family}, she gets out a variety
of toys for him. The bag of building blocks has {x}
blocks in it. The bin of stuffed animals has {y} stuffed
animals inside.The tower of stacking rings has {z}
multicolored rings on it.{name} recently bought a tube
of bouncy balls, bringing her total number of toys she
bought for her {family} up to {total}. How many bouncy
balls came in the tube?

#variables:
- name = sample(names)
- family = sample(["nephew", "cousin", "brother"])
- x = range(5, 100)
- y = range(5, 100)
- z = range(5, 100)
- total = range(100, 500)
- ans = range(85, 200)

#conditions:
- x + y + z + ans == total

Let T be the number of bouncy balls in the tube. After
buying the tube of balls, {name} has {x} + {y} + {z} + T =
{ x + y + z } + T = {total} toys for her {family}.

Thus, T = {total} - { x + y + z } = <<{total}-{ x + y + z
}={ans}>>{ans} bouncy balls came in the tube.

Figure 1: Illustration of the GSM-Symbolic template creation process. This dataset serves as a
tool to investigate the presumed reasoning capabilities of LLMs, enabling the design of controllable
mathematical reasoning evaluations with more reliable metrics. Our results reveal that all state-of-
the-art LLMs exhibit significant performance variations, suggesting the fragility or lack of reasoning.

is probabilistic pattern-matching rather than formal reasoning (Jiang et al., 2024). Although LLMs
can match more abstract reasoning patterns, they fall short of true logical reasoning. Small changes
in input tokens can drastically alter model outputs, indicating a strong token bias and suggesting
that these models are highly sensitive and fragile (Jiang et al., 2024; Shi et al., 2023). Additionally,
in tasks requiring the correct selection of multiple tokens, the probability of arriving at an accurate
answer decreases exponentially with the number of tokens or steps involved, underscoring their
inherent unreliability in complex reasoning scenarios (Schae!er et al., 2023).
Mathematical reasoning is a crucial cognitive skill that supports problem-solving in numerous
scientific and practical applications. Consequently, the ability of large language models (LLMs) to
e!ectively perform mathematical reasoning tasks is key to advancing artificial intelligence and its real-
world applications. The GSM8K (Grade School Math 8K) dataset (Cobbe et al., 2021) has emerged
as a popular benchmark for evaluating the mathematical reasoning capabilities of LLMs. While it
includes simple math questions with detailed solutions, making it suitable for techniques like Chain-of-
Thought (CoT) prompting, it provides only a single metric on a fixed set of questions. This limitation
restricts comprehensive insights into the models’ mathematical reasoning. Moreover, the popularity
and prevalence of GSM8K can increase the risk of inadvertent data contamination. Finally, the
static nature of GSM8K does not allow for controllable experiments to understand model limitations,
such as behavior under varied conditions or changes in question aspects and di"culty levels.

2

�8

�6

�4

�2

0

G
S
M

8K
→

G
S
M

-S
ym

b
ol

ic
A

cc
u
ra

cy
D

ro
p

(%
)

-9.2

M
is

tr
al

-7
b
-i
t-

v0
.1

-7.4

G
em

m
a2

-2
b

-7.4

G
em

m
a2

-2
b
-i
t

-6.2

G
em

m
a2

-9
b

-6.2

G
em

m
a2

-9
b
-i
t

-6.2

M
is

tr
al

-7
b
-i
t-

v0
.3

-6.1

M
at

h
st

ra
l-
7b

-v
0.

1

-4.8

P
h
i-
3-

m
ed

iu
m

-4.8

P
h
i-
3-

sm
al

l

-3.9

G
em

m
a2

b

-3.9

G
em

m
a2

b
-i
t

-3.7

G
em

m
a-

7b
-i
t

-3.4

M
is

tr
al

-7
b
-v

0.
1

-3.0

P
h
i-
3-

m
in

i

-2.8

P
h
i-
3.

5-
m

in
i-
it

-2.4

G
P

T
-4

o-
m

in
i

-2.2

o1
-p

re
vi

ew

-1.4

G
em

m
a2

-2
7b

-i
t

-1.3

L
la

m
a3

-8
b
-i
t

-0.7

M
is

tr
al

-7
b
-v

0.
3

-0.6

o1
-m

in
i

-0.3

G
P

T
-4

o

Models

Figure 3: The performance of all state-of-the-art models on GSM-Symbolic drops compared to GSM8K.
Later, we investigate the factors that impact the performance drops in more depth.

Another noteworthy observation is that the performance (represented by the dashed line in Fig. 2)
on the original questions from the 100 examples of GSM8K used as templates is often more than one
standard deviation away from the center of the GSM-Symbolic performance distribution, frequently
on the right side of the distribution (this holds for 21 out of 25 models). One explanation for this
could be data contamination, where some of the test examples from GSM8K inadvertently ended up
in the training set of these models, leading to an optimistic bias in performance. Fig. 3 shows the
performance drop from GSM8K to GSM-Symbolic for several models. We can see that for models
such as Gemma2-9B, Phi-3, Phi-3.5, and Mathstral-7B, the dashed line in Fig. 2 lies on the right
side, and the drop in performance is higher than for models such as Llama3-8b and GPT-4o, where
the performance on GSM8K is close to the center of the GSM-Symbolic distribution and the drop in
performance is negligible. In Appendix A.3, we present further results to support this claim for
other models such as Phi-2 and Mistral-7B. These results lead us to investigate the fragility of the
reasoning abilities of LLMs in the next section.

4.2 How Fragile is Mathematical Reasoning in Large Language Models?

In the previous sub-section, we observed high performance variation across di!erent sets generated
from the same templates, along with a performance degradation compared to the original GSM8K
accuracy. This suggests that the perceived reasoning process of language models may not be formal
and is hence susceptible to changes. One explanation is that these models attempt to perform a kind
of in-distribution pattern-matching, aligning given questions and solution steps with similar ones
seen in the training data. As no formal reasoning is involved in this process, it could lead to high
variance across di!erent instances of the same question. In this sub-section and the next one, we
investigate these observations further and we show that several factors contribute to the performance
variation of the models.
First, we investigate the impact of the type of change to understand the di!erence between changing
names (e.g., person names, places, foods, currencies, etc.) versus changing numbers (i.e., the values
of variables).

7

After replacing familiar nouns (e.g., “uncle,” “nephew”) with symbols, language models 
exhibit performance declines.
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GSM-NoOp

Oliver picks 44 kiwis on Friday. Then he picks 58 kiwis on Saturday. On Sunday, he picks double the
number of kiwis he did on Friday, but five of them were a bit smaller than average. How many kiwis
does Oliver have?

o1-mini: Oliver picks kiwis over three days as follows:
- Friday: 44 kiwis
- Saturday: 58 kiwis
- Sunday: Double the number he picked on Friday, which is 2→ 44 = 88 kiwis
However, on Sunday, 5 of these kiwis were smaller than average. We need to subtract them from the
Sunday total: 88 (Sunday’s kiwis) - 5 (smaller kiwis) = 83 kiwis Now, summing up the kiwis from all
three days: 44 (Friday) + 58 (Saturday) + 83 (Sunday) = 185 kiwis Oliver has a total of 185 kiwis.

Llama3-8B: Let’s break it down step by step:
Oliver picks 44 kiwis on Friday. He picks 58 kiwis on Saturday. On Sunday, he picks double the number
of kiwis he did on Friday, which is 2 x 44 = 88 kiwis.
Five of the kiwis picked on Sunday are a bit smaller than average, so we subtract 5 from the total
number of kiwis picked on Sunday: 88 - 5 = 83 kiwis. Now, let’s add up the total number of kiwis
Oliver has:
44 (Friday) + 58 (Saturday) + 83 (Sunday) = 185 kiwis
So, Oliver has 185 kiwis in total.

Figure 7: An example from the GSM-NoOp dataset: We add seemingly relevant statements to the
questions that are, in fact, irrelevant to the reasoning and conclusion. However, the majority of
models fail to ignore these statements and blindly convert them into operations, leading to mistakes.

4.4 Can LLMs Really Understand Mathematical Concepts?

In the previous sections, we studied the impact of type of change and di!culty on the performance
distribution. In this section, we demonstrate that models are susceptible to catastrophic performance
drops on instances not part of the training distribution, potentially due to their reliance on in-
distribution pattern-matching.
We introduce GSM-NoOp, a dataset designed to challenge the reasoning capabilities of language models.
To create the templates, we add seemingly relevant but ultimately inconsequential statements to
GSM-Symbolic templates. Since these statements carry no operational significance, we refer to them
as "No-Op". These additions do not a!ect the reasoning required to solve the problem.
Fig. 7 illustrates an example from GSM-NoOp. An interesting observation is that models tend to
blindly subtract the number of smaller fruits, potentially because their training datasets included
similar examples that required conversion to subtraction operations. In the Appendix, we include
additional failure cases from GSM-NoOp. Overall, we find that models tend to convert statements to
operations without truly understanding their meaning. For instance, a common case we observe is
that models interpret statements about “discount” as “multiplication”, regardless of the context. This
raises the question of whether these models have truly understood the mathematical concepts well
enough. Consequently, as shown in Fig. 8a, there is a catastrophic performance decline across all
tested models, with the Phi-3-mini model experiencing over a 65% drop, and even stronger models
such as o1-preview showing significant declines.
To better understand this performance drop, we conducted another experiment. While our previous
evaluations on GSM-P2 used the original 8-shots of GSM8K, here we explore two new scenarios where
we change the source of the 8-shots. We report the results in Figures 8b and 8c.
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After adding semantically related but logically irrelevant statements, 
LM fail to ignore them but wrongly combine them and make mistakes.
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Hidden Features Encode Math Operations

[Problem] The number of each Riverview High‘s Film Studio equals 5 times as 
much as the sum of each Film Studio’s Backpack and each Dance Studio‘s 
School Daypack. … The number of each Film Studio's Messenger Backpack 
equals 13.  
[Question] How many Backpack does Central High have? 
[Solution] Define Dance Studio's School Daypack as p; so p = 17. Define Film 
Studio's Messenger Backpack as W; so W = 13. Define Central High's Film Studio 
as B; so B = p + W = 17 + 13 = 7. Define Film Studio's School Daypack as g; R = W 
+ B = 13 + 7 = 20; so g = 12 + R = 12 + 20 = 9. Define Film Studio's Backpack as 
w; so w = g + W = 9 + 13 = 22. Define Central High's Backpack as c; so c = B * w 
= 7 * 22 = 16. [Answer] 16.

dep(A,B) – at the end of problem description, 
does the model know parameter A depend on B?

nece(A) –  after question is asked, does the model 
know if A is necessary for answering question?

can_next(A) – in the middle of solution, does the 
model know if A can be computed next?

e.g. can_next(“Riverview High's Film Studio”) = true
can_next(“Riverview High's Dance Studio”) = false

e.g.  nece(“Riverview High's Film Studio”) = false

e.g.  dep(“Riverview High‘s Film Studio”, 
        “Film Studio’s Messenger Bag”) = true

Figure 5: To discover model’s mental (reasoning) process.

Figure 6: Illustrations of V-probing on the nece(A) task. For other tasks, see Figure 13.

from the question [19], the language model can directly generate shortest solutions without using
a scratch pad. But, how does it achieve so? We shall investigate in the next section.

4 Result 4-5: Discover Model’s Mental Process

To understand how the model learns to solve math problems, we propose studying the following
probing tasks, which align closely with human problem-solving strategies:

• nece(A): if parameter A is necessary for computing the answer.
• dep(A,B): if parameter A (recursively) depends on parameter B given the problem statement.
• known(A): if parameter A has already been computed.
• value(A): the value of parameter A (a number between 0-22, or 23 if known(A) = false).
• can next(A): if A can be computed in the next solution sentence (namely, its predecessors
have all been calculated). Note that A might not be necessary to answer the question.

• nece next(A): if parameter A satisfies both can next(A) and nece(A).
For a model to generate the shortest solutions, it must identify nece(A) for all A’s in its mental
process. This is because whether nece(A) is true directly corresponds to whether there is a solution
sentence to compute A. However, how early does the model recognize this, and how is it stored?
Similarly, does it recognize dependencies between parameters (dep)? If so, how early is this mental
process completed? Moreover, in the middle of solution generation, does the model keep track of
each parameter A’s value at all times (value, known)? Does the model mentally know all possible
parameters A that are ready to compute in the next sentence (can next)? Or does it only focus
on A that is both ready and necessary (nece next)?

This section proposes probing technique to answer all of these questions.

8
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Figure 10: Increasing probing accuracies of nece(A) with increasing layer depth. The x-axis denotes the distance of
parameter A to the query parameter, with colors from light to dark to represent layers 1 to 20.
This figure is for a 20-layer GPT2 model; for other model depths/sizes, see Figure 14.

We make two disclaimers here. First, if the “backward thinking process” is added as CoT to
the data (see the end of Section 4.2), then deep mental thinking is no longer required, reducing the
language model’s depth requirement. However, in practice, many such “thinking processes” may
not be included in standard math solutions or languages in general.

Second, the above claim does not imply that “a t-step mental thinking requires a depth-t trans-
former”. It is plausible for a single transformer layer (containing many sub-layers) to implement
t > 1 mental thinking steps, though possibly with reduced accuracy as t increases. We refrain from
providing an exact correlation in this paper, as it heavily depends on the data distribution.

7 Conclusion

We use a synthetic setting to demonstrate that language models can learn to solve grade-school
math problems through true generalization, rather than relying on data contamination or template
memorization. We develop probing techniques to examine the models’ hidden reasoning processes.
Our findings reveal that these models can learn math skills aligned with human cognitive processes,
as well as “new thinking processes” not present in the training data. Additionally, we propose a
method to predict a model’s errors before it begins to solve a problem and to explain why models
make mistakes when they occur. Based on this discovery, we write a separate paper to improve
language models’ math reasoning accuracy [21]. We also provide a principled approach to connect
the model’s depth to its capable reasoning length. We believe this research opens doors to study
the mathematical reasoning skills of language models from a di!erent angle compared to pushing
math benchmarks.

One may argue that iGSM may be very di!erent from the pretrain data that modern LLMs use.
While this may be true, we are looking into the future. Recall, even GPT-4/4o of today cannot
few-shot learn to solve iGSM-med

op=11 (see Figure 2). From this perspective, it is reasonable to
believe that future versions of LLMs will rely on synthetic math pretrain data to improve their
reasoning skills. While one may not directly use iGSM, it is tempting to use existing LLMs (such
as Llama-3) to turn iGSM into more natural formats while keeping the logical chains. On the other
hand, we have discovered that models trained purely on the iGSM data make similar mistakes
compared to GPT-4/4o (see Section 5 and Appendix G). This further confirms that our findings
do connect to practice, regarding the model’s hidden reasoning process.

Finally, Part 2 of this work series focuses on how language models solve grade-school math
problems (including Part 2.2 [21]). We also cover how language models learn language structures
in Part 1 [1] (in particular, how they mentally perform dynamical programming), and learn world
knowledge in Part 3 [2–4].
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y-axis: , predicting if fact  is necessary for answering question nece(X, Q) X Q

model depth

potential reason: every math operation needs certain depth of layers to stack with 
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Figure 11: Accuracy, attention, and adjacency matrix results for the experiment on Blocksworld
benchmark.

(a) Observed Reachability (b) The W
V →

Matrix (c) Average Weight Gap

Figure 12: Experiment for reachability on Blocksworld benchmark.

case, each of the first 24 nodes is not observed reachable to any nodes other than itself. To validate
whether the Transformer has captured this information, we construct W V

→
matrix through the same

method presented in Section 4. As shown in Figure 12(b), the first 24 columns of the W V
→

matrix are
noticeably darker, which aligns with the observed reachability matrix in Figure 12(a). Furthermore,
we plot the gap between the average weight of W V

→
on observed reachability and the average weight

of W V
→

on non-observed reachability in Figure 12(c), and find that this gap keeps increasing for all
models. Since there does not exist any test pairs with degree 2 or more (as defined in Section 4), we
do not compare the accuracy between different degrees in Blocksworld.

In summary, our experimental results on the Blocksworld benchmark confirm our theoretical analyses
(Theorem 3) and empirical results on the synthetic data, and they at least partially explain the planning
capability of the Transformer on the Blocksworld scenario.
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Learning on Error-Correction Data Helps

(Solution - retry rate 0.5) Define Dance Studio’s School Daypack as p; so p = 17. Define Film Studio’s School Daypack

as [BACK]. Define Film Studio’s Messenger Backpack as W; so W = 13. Define Central High’s Classroom as [BACK]. Define

Central High’s Backpack as [BACK]. Define Central High’s Film Studio as B; so B = p + W = 17 + 13 = 7. Define Film

Studio’s School Daypack as g; R = W + B = 13 + 7 = 20; so g = 12 + R = 12 + 20 = 9. Define Riverview High’s Dance

Studio as [BACK]. Define Film Studio’s Backpack as w; so w = g + W = 9 + 13 = 22. Define Riverview High’s Dance Studio

as [BACK]. Define Central High’s Backpack as c; so c = B * w = 7 * 22 = 16.

(a) A solution example identical to Figure 2 but with retry rate = 0.5. The strikethrough like “Define Central High’s
Backpack as” is for illustration purpose, and the actual data is normal English text without strikethrough symbols.

(b) Comparison of models pretrained using iGSM data with retry rate > 0. For a stronger comparison, the model
is pretrained on the retry vs original (error-free) data using the same number of tokens (i.e., retry data has fewer
problems than original data) and identical training parameters, see Appendix D.1.

Figure 4: Pretrain language models on error-free vs retry data. Observation: especially on the hardest tasks
(op = 23 or 32), models pretrained from retry data exhibit the greatest improvements for larger retry rate.

• Comparing version1/2 with beam32, we see “retry upon regret” improves upon beam search.
However, even though error detection is 99% accurate, this improvement is still marginal:
about 2% for the op = 23 (resp. op = 32) case for iGSM-med (resp. iGSM-hard).

• Comparing version1/2 with versionP, we see that the success of “retry upon regret” largely
depends on an extremely accurate error detector — increasing the error detection success rate
from 99% to 100% can significantly improve the final reasoning accuracy, but this is too ideal.14

• The idea of “retry upon regret” increases the inference complexity because one needs to keep
an error detector model alongside and keep checking the correctness of the generated solution
steps. In the event of an error, the model needs to regenerate using randomness (possibly
multiple times) until it passes the error detector. Ideally, one wishes to have just a single
model to achieve “general intelligence” using the simplest autoregressive decoding algorithm,
without multi-round error corrections.

4 Result 2-6: Pretrain with Retry Data

In this section, we prepare pretrain data to teach the model to directly correct mistakes.

Math data with retry. Since we use a controllable, synthetic math dataset, we can, at the
beginning of each solution sentence, with probability retry rate → [0, 1), insert a wrong parameter
that cannot be computed next, followed by a special token [BACK].15 We repeat this process, so
with probability (retry rate)2, it may generate another wrong parameter at the same location, and
so on. We provide an extreme example with retry rate = 0.5 in Figure 4(a), and a more complex

14After all, a false negative in error detection results in a wrong answer, and having a false positive can result in
the model regenerating too many times.

15This parameter is uniformly randomly chosen from all such parameters, except those already appearing.
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How Does Error-Retry Data Benefit Reasoning?

After training on error-retry data


1. No need to mask out mistakes’ loss terms.


2. During inference, LLMs hardly intentionally make mistakes,


3. Instead, they still try their best to answer correctly in the first place.


summary: retry data is beneficial and safe.

Part 1: Ethology - Topic 3: Reasoning
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Reasoning Can Also Be Interpreted as 
Random Walk in Statement Space

Wang, Xinyi, et al. "Understanding Reasoning Ability of Language Models From the Perspective of Reasoning Paths Aggregation." International Conference on Machine Learning. PMLR, 2024.

Understanding the Reasoning Ability of Language Models
From the Perspective of Reasoning Paths Aggregation

Xinyi Wang 1 Alfonso Amayuelas 1 Kexun Zhang 2 Liangming Pan 1 Wenhu Chen 3 William Yang Wang 1

Abstract
Pre-trained language models (LMs) are able to
perform complex reasoning without explicit fine-
tuning. To understand how pre-training with a
next-token prediction objective contributes to the
emergence of such reasoning capability, we pro-
pose that we can view an LM as deriving new
conclusions by aggregating indirect reasoning
paths seen at pre-training time. We found this
perspective effective in two important cases of rea-
soning: logic reasoning with knowledge graphs
(KGs) and math reasoning with math word prob-
lems (MWPs). More specifically, we formalize
the reasoning paths as random walk paths on the
knowledge/reasoning graphs. Analyses of learned
LM distributions suggest that a weighted sum
of relevant random walk path probabilities is a
reasonable way to explain how LMs reason. Ex-
periments and analysis on multiple KG and MWP
datasets reveal the effect of training on random
walk paths and suggest that augmenting unlabeled
random walk reasoning paths can improve real-
world multi-step reasoning performance. 1.

1. Introduction
Recently, pre-trained large language models (LLMs) (Tou-
vron et al., 2023a;b; Brown et al., 2020) have demonstrated
remarkable capabilities in performing intricate reasoning
tasks (Kojima et al., 2022). These tasks include problem-
solving with world knowledge (Hendrycks et al., 2020;
Suzgun et al., 2022), logical reasoning (Pan et al., 2023),
and solving mathematical problems (Cobbe et al., 2021;
Hendrycks et al., 2021). These models are typically not ex-

1Department of Computer Science, University of Califor-
nia, Santa Barbara 2Language Technologies Institute, Carnegie
Mellon University 3Cheriton School of Computer Science,
University of Waterloo. Correspondence to: Xinyi Wang
<xinyi wang@ucsb.edu>.

Preprint.
1We open source the code at https://github.com/

WANGXinyiLinda/LM_random_walk

Figure 1. We hypothesize that the pre-training corpus can be
viewed as generated from random walks on a reasoning graph
over world knowledge/concepts. With each node si representing
concepts, pj can be viewed as arguments that connect them. Then
we hypothesize that a language model (LM) training on such a
corpus can be viewed as reasoning by a weighted aggregation of
random walk paths that connect the entities in interest. PLM denote
the LM distribution while PD denotes the random walk probability
from the pre-training corpus. w1

i denotes the weight assigned to
the first random walk path by the LM for argument pi, and w2

i

denotes the weight assigned to the second random walk path.

plicitly fine-tuned to solve these tasks. Recent research (Jain
et al., 2023) also suggests that the supervised fine-tuning
process following pre-training only learns a wrapper on top
of the already existing model capabilities, instead of learn-
ing new ones. It is intriguing to understand how next-token
prediction pre-training contributes to the emergence of such
reasoning capability. A better understanding of this matter
can also inspire new pre-training/fine-tuning techniques to
improve these important abilities of LLMs.

It is well-known that LLMs acquire emergent abilities
through extensive pre-training (Wei et al., 2022a). In this
paper, we focus on elucidating the emergence of reason-
ing ability — the capacity to draw novel conclusions from
existing knowledge, which has been less studied. Many
recent works also attempt to understand this phenomenon.
Some works focus on understanding Transformers’ reason-
ing capability by construction (Liu et al., 2023; Chi et al.,
2023; Feng et al., 2023). Others try to provide post hoc
mechanistic explanations (Geiger et al., 2021; Wu et al.,
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Figure 3. Testing accuracy w.r.t. various maximum pre-training random walk lengths (1 → Lmax → 10) on Countries (left) and UMLS
(right) datasets, respectively. For Countries, the LM (PLM) performance converges to the weighted aggregation (Pw) performance, while
for UMLS, LM consistently outperforms both weighted (Pw) and unweighted (Ps) aggregation performance. This is likely because LM
(PLM) can learn a better logical rule weighting scheme than weighted aggregation (Pw) in more complex KGs.

Figure 4. Testing accuracy of LM trained on different random walk
path lengths. Each line corresponds to a different KG dataset and
thus is not directly comparable. We want to highlight the common
trend here that each line peaks at some optimal path length.

weighted aggregation scheme Pw also converges to a stable
distribution. To investigate why path length 3 is unique, we
find the average path length corresponding to the largest
number of valid paths for each relation in the testing set is
3.14. We find the average path length corresponding to the
largest weight assigned by Pw when Nmax = 10 is 2.75.
This confirms that path length three is likely a good rule
length for many relations. However, from Figure 3 (right),
we can see that both weighted (Pw) and unweighted (Ps)
aggregation peaked at path length two instead of three. We
believe this is because when the rule length becomes larger
(i.e. larger than two), the validity of a rule would be more
head entity (e1) dependent. Using only relation-dependent
weight wr(h) as in Pw is likely insufficient. This also ex-
plains why LM constantly outperforms both path aggrega-
tion methods: LM likely learns a rule importance function
that depends both on the head entity and the relation.

Different from the Countries dataset, UMLS’ KL[Ps, PLM]
does not increase when the path length for Ps in-
creases. Instead, KL[Ps, PLM] follows a similar trend as
KL[Pw, PLM], while in general KL[Pw, PLM] is smaller
than KL[Ps, PLM]. Similarly, in Figure 3 (right), the
weighted (Pw) and unweighted (Ps) aggregation has a
similar performance, while Pw is slightly better. This

shows that the logical rule weights learned by Pw are
similar between different rules, so it has similar effects
(KL and accuracy) as the unweighted version Ps. The
LM also has a flatter distribution, as we can see for
UMLS KL[P →, PLM] < KL[Pu, PLM] while for Coun-
tries KL[P →, PLM] > KL[Pu, PLM]. This is likely because
UMLS is more complex than Countries (49 v.s. 2 relations),
thus many longer paths and rules are similarly useful for
prediction, making the LM distribution flatter.

Prediction accuracy v.s. pre-training path length We
briefly touched on how the pre-training random walk path
length Lmax affects the LM distribution in the analysis
above. In general, a longer path length improves the predic-
tion accuracy and decreases KL[Pw, PLM]. This shows that
LM can improve the logical rule weight assignment when
trained with a longer path length. To further investigate
this problem, we pre-train LM on longer random walk path
lengths with more KG datasets.

In Figure 4, we show the LM prediction accuracy v.s. the
maximum pre-training random path length of 1, 5, 7, 10, 15,
and 20, trained on five different KG datasets. In general,
there is a large performance gain from a path length of 1
to 5. Note that when the path length is equal to one, we
randomly sample individual triples from a KG. i.e. There
are no reasoning paths in the training data. So it is impor-
tant to have reasoning paths with a non-trivial length in the
pre-training data, to enable the LM’s reasoning ability. By
extending the maximum length from 10 to 20, we can see
that there is a slight drop in the Countries dataset. Similarly,
in most datasets, there is a small decrease after an optimal
path length. This is likely because a too-long random walk
path would contain more noise/unrelated triples for reason-
ing. i.e. It is less likely to be useful for predicting the head
and tail entity relation in a path aggregation sense. On the
other hand, we can understand this from a localized data
structure perspective (Prystawski et al., 2023): a sufficiently
long random walk path makes any two entities similarly
possible to appear in the same path, thus hurting the local
dependency in the training data.
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Room for Future Research
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• A more precise and systematic description of reasoning trace in LMs


• Extension to other reasoning domains, e.g., reasoning involving knowledge, 
domain-specific reasoning, reasoning on augmented information


• Revealing reasoning capacity and scaling across model size & data.



How Do Components Function in 
Language Models?
Topics


• Attention: Attention, position and context


• Embeddings: What is the function of word embeddings

Part 2: Physiology
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Attention, Position and Context



Absolute Positional Encoding: ❌

The absolute positional encoding used in vanilla Transformers is not 
generalizable to unseen lengths.

Unseen 
position
s

???
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Absolute Positional Encoding: ❌

The absolute positional encoding used in vanilla Transformers is not 
generalizable to unseen lengths.

https://erdem.pl/2021/05/understanding-positional-encoding-in-transformers

Unseen 
position
s

???
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Su, Jianlin, et al. "Roformer: Enhanced transformer with rotary position embedding." arXiv preprint arXiv:2104.09864 (2021).

RoPE:

Relative Positional Encoding: ❓
Relative positional encoding was proposed in the hope to alleviate 
this problem


Core idea: determining attention based on distance

(Used in 
LLaMA, 
Llama-2, 
GPT-J, etc.)

x = (
… …

rot(x)
 …

x1, x2, x3, x4, xd)… … xd−1,
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Su, Jianlin, et al. "Roformer: Enhanced transformer with rotary position embedding." arXiv preprint arXiv:2104.09864 (2021).

RoPE:

Relative Positional Encoding: ❓
Relative positional encoding was proposed in the hope to alleviate 
this problem


Core idea: determining attention based on distance

(Used in 
LLaMA, 
Llama-2, 
GPT-J, etc.)

x = (
… …

rot(x)
 …

x1, x2, x3, x4, xd)… … xd−1,



only depends on 

, regardless of 
 or .

li,j = rot(qi)⊤rot(kj)

i − j
i j
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length

Negative Log-Likelihood (NLL, also = (perplexity)) log ↓

Relative Positional Encoding: ❓
However, current LLMs still struggle on unseen 
lengths.

Low perplexity, good fluency

High perplexity, bad fluency

Part 2: Physiology - Topic 1: Attention



A Conceptual Model of Relative Position Encoding0 1 2 3 4 5 6 7
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(b) A Conceptual Model of Relative Positional Attention
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Han, Chi, et al. "LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models." Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: 
Human Language Technologies (Volume 1: Long Papers). 2024. (Outstanding Paper Award)
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Factor 1: Unseen Distance
Theorem 1 (Informal): For an attention mechanism using relative positional 
encoding, the attention logits must explode to infinities to differentiate 
previously unseen distances apart as the sequence length increases. 

length

Max. Logit in Sequence

The attention logits in 
Llama-2 explode as 
length exceeds the pre-
training limit.

pre-training 
length bound = 
4096

Han, Chi, et al. "LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models." Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: 
Human Language Technologies (Volume 1: Long Papers). 2024. (Outstanding Paper Award)
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Factor 2: Too many tokens
Longer texts require attention on more tokens. 

Theorem 2 (informal): If the attention logits are bounded, as the sequence 
becomes longer, the attention entropy grows to infinity. 

length

Attention Entropy

The entropy of attention 
distribution in Llama-2 
continuously increases 
with length.

Han, Chi, et al. "LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models." Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: 
Human Language Technologies (Volume 1: Long Papers). 2024. (Outstanding Paper Award)
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Factor 3: Implicitly Encoded Position

Layer 2 Layer 3

Layer 5 Layer 10 Layer 20

Initial few tokens

Initial few tokens
Initial few tokens

Initial few tokens

Layer 1

Initial few tokens

From layer 2 and higher, initial few tokens occupy a distinct feature 
space.

Theorem 3 (Informal): Even 
without absolute positional 
embeddings, attention can 
restore position information 
of tokens.

Kazemnejad, Amirhossein, et al. "The impact of positional encoding on length 
generalization in transformers." Advances in Neural Information Processing 
Systems 36 (2023): 24892-24928.

Han, Chi, et al. "LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models." Proceedings of the 2024 
Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 
1: Long Papers). 2024. (Outstanding Paper Award)
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Solution: LM-Infinite
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Han, Chi, et al. "LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models." Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: 
Human Language Technologies (Volume 1: Long Papers). 2024. (Outstanding Paper Award)
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Length Generalization (to 200M length)
LLaMA

Llama-2

GPT-J-6B

MPT-7B

MPT-7B + LM-Infinite

GPT-J-6B + LM-Infinite

Llama-2 + LM-Infinite

LLaMA + LM-Infinite

MPT-7B-Storywriter

Negative Log-Likelihood

LengthHan, Chi, et al. "LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models." Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: 
Human Language Technologies (Volume 1: Long Papers). 2024. (Outstanding Paper Award)
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Length Generalization (to 200M length)

LLaMA

Llama-2

GPT-J-6B

MPT-7B

MPT-7B + LM-Infinite

GPT-J-6B + LM-Infinite

Llama-2 + LM-Infinite

LLaMA + LM-Infinite

MPT-7B-Storywriter

Negative Log-Likelihood

Length

Han, Chi, et al. "LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models." Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: 
Human Language Technologies (Volume 1: Long Papers). 2024. (Outstanding Paper Award)

Part 2: Physiology - Topic 1: Attention



To Perceive Sensitive Information
Re-attending to top-k attention tokens

e.g. 1st large attention

Why: to acquire key 
information that might be 
stored in the middle 
“ignored” region again.


How: selecting tokens with 
top-k (e.g., k=4) attention 
logits, and reintroducing 
them into attention.


When: when solving 
information sensitive tasks 
like question answering, 
retrieving information from 
documents, etc.
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Attention Also Explains In-Context Learning

Input: moving and important. 

Input: excruciatingly unfunny and pitifully unromantic.

Input: the plot is nothing but boilerplate clichés from start to finish.

…

Input: intelligent and moving

Output: Positive.

Output: Negative.

Output: Negative.


Output: ________

x y
demonstrative 
samples

test input

̂y =
∑i K(xi, xtest)yi

∑i K(xi, xtest)
K(xi, xtest)

(similarity kernel)

70%: “Positive”

Han, Chi, et al. "Explaining emergent in-context learning as kernel regression." arXiv preprint arXiv:2305.12766 (2023).
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Attention Also Explains In-Context Learning
Input: moving and important. 

Input: excruciatingly unfunny and pitifully unromantic.

Input: the plot is nothing but boilerplate clichés from start to finish.

…

Input: intelligent and moving

Output: Positive.

Output: Negative.

Output: Negative.


Output: ________

x y
demonstrative 
samples

test input

̂y =
∑i K(xi, xtest)yi

∑i K(xi, xtest)
K(xi, xtest)

(similarity kernel)

70%: “Positive”

• The output  is sampled from a weighted average over example outputs  
(i.e., a kernel-regression)


• the weights are computed by a certain similarity metric  (i.e., a 
kernel)

̂y yi

K(xi, xtext)

Han, Chi, et al. "Explaining emergent in-context learning as kernel regression." arXiv preprint arXiv:2305.12766 (2023).
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The Kernel Originates from Pre-Training
Kernel regression (hypothesized ICL algorithm)
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The Kernel Originates from Pre-Training

The kernel (similarity metric)

A representation of sample input 
 for predicting the next tokenx

A matrix about the pre-
training objective

Kernel regression (hypothesized ICL algorithm)
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The Attention Applies to  As Kernel Regressionyi
layer 1 
layer 2 
layer 3 
layer 4 
layer 5 
layer 6 
layer 7 
layer 8 
layer 9 
layer 10 
layer 11 
layer 12 
layer 13 
layer 14 
layer 15 
layer 16 
layer 17 
layer 18 
layer 19 
layer 20 
layer 21 
layer 22 
layer 23 
layer 24 
layer 25 
layer 26 
layer 27 
layer 28

head 1 
head 2 
head 3 
… 
head 16

x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 xn yn xtest

sample 1 sample 2 sample 3 sample 4 sample 5 sample n
x6 y6
sample 6

…
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The Explanation Aligns With the Model Output

Layer Index

H
ea

d 
In

de
x

Certain attention heads can reconstruct the LLM ICL output with the 
explanation.
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The Attention

Preprint. Under review.

(a) Predicting argmaxo P (o|xi) with key vectors. (b) Predicting yi with value vectors.

Figure 5: Key and value vectors encode label and LLM prediction information at high-attention
position. Here x-axis (0→27) is layer number, y-axis denotes relative position to the high-attention
position within each demonstration, and z-axis is accuracy. Each sphere is an attention head. The
curve shows average accuracy within each layer.

Method sst2 mnli
rotten- tweet_eval tweet_eval tweet_eval

tomatoes (hate) (irony) (offensive)

task-specific best head 0.864 0.628 0.836 0.768 0.732 0.768
overall best head 0.817 0.622 0.714 0.740 0.642 0.740

Table 1: Accuracy of reconstructing LLM ICL outputs with kernel regression.

Method sst2 mnli
rotten- tweet_eval tweet_eval tweet_eval

tomatoes (hate) (irony) (offensive)

GPT-J-6B ICL 0.805 0.383 0.671 0.539 0.519 0.542

all-MiniLM-L6-v2 0.503 0.321 0.478 0.548 0.491 0.588
bert-base-nli-mean-tokens KR 0.523 0.325 0.502 0.545 0.479 0.597
task-specific best head KR 0.789 0.974 0.692 0.560 0.584 0.560
overall best head KR 0.766 0.808 0.648 0.462 0.446 0.462

Table 2: Performance of explicit kernel regression (KR) and LLM ICL on downstream tasks.

with the best average reconstruction accuracy. We see 70%→80% accuracy on tasks except mnli. In
Table 2 we see that kernel regression on head features achieves similar or superior performance than
kernel regression on sentence encoders such as all-MiniLM-L6-v2 2 and bert-base-nli-mean-tokens 3,
and even ICL itself, proving the validity of such kernels.

6 CONCLUSIONS AND FUTURE WORK

In conclusion, our work provides a novel theoretical view to understand the intriguing in-context
learning (ICL) capabilities of Transformer-based large language models (LLMs). We propose that
LLMs can simulate kernel regression algorithms when dealing with in-context examples. Our
empirical investigations into the in-context behaviors of LLMs reveal that the model’s attention and
hidden features during ICL are congruent with the behaviors of kernel regression. Furthermore,
our theory also explains several observable phenomena in the field of ICL: why the retrieval of
demonstrations similar to the test sample can enhance performance, the sensitivity of ICL to output
formats, and the improvements in ICL accuracy when selecting in-distribution and representative
samples. There are still remaining challenges in this topic, such as understanding the effect of sample
orderings and the robustness to perturbed labels. These questions, along with understanding other
perspectives of LLMs, are exciting questions for future research.

2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

3
https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens

9

KR based on baseline sentence embeddings models

The KR explanation explained most tasks well (except for MNLI)
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Room for Future Research

• Attention module’s role in syntax and word order processing


• More precise categorization of attention’s role in demonstration learning


• Explaining and addressing and lost-in-the-middle and position bias 
problem
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What Is the Function of Word 
Embeddings
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What Do Word Embeddings Embed?

Figure 2: Left panel shows vector offsets for three word
pairs illustrating the gender relation. Right panel shows
a different projection, and the singular/plural relation for
two words. In high-dimensional space, multiple relations
can be embedded for a single word.

provided. We have explored several related meth-
ods and found that the proposed method performs
well for both syntactic and semantic relations. We
note that this measure is qualitatively similar to rela-
tional similarity model of (Turney, 2012), which pre-
dicts similarity between members of the word pairs
(xb, xd), (xc, xd) and dis-similarity for (xa, xd).

6 Experimental Results

To evaluate the vector offset method, we used
vectors generated by the RNN toolkit of Mikolov
(2012). Vectors of dimensionality 80, 320, and 640
were generated, along with a composite of several
systems, with total dimensionality 1600. The sys-
tems were trained with 320M words of Broadcast
News data as described in (Mikolov et al., 2011a),
and had an 82k vocabulary. Table 2 shows results
for both RNNLM and LSA vectors on the syntactic
task. LSA was trained on the same data as the RNN.
We see that the RNN vectors capture significantly
more syntactic regularity than the LSA vectors, and
do remarkably well in an absolute sense, answering
more than one in three questions correctly. 2

In Table 3 we compare the RNN vectors with
those based on the methods of Collobert and We-
ston (2008) and Mnih and Hinton (2009), as imple-
mented by (Turian et al., 2010) and available online
3 Since different words are present in these datasets,
we computed the intersection of the vocabularies of
the RNN vectors and the new vectors, and restricted
the test set and word vectors to those. This resulted
in a 36k word vocabulary, and a test set with 6632

2Guessing gets a small fraction of a percent.
3http://metaoptimize.com/projects/wordreprs/

Method Adjectives Nouns Verbs All
LSA-80 9.2 11.1 17.4 12.8
LSA-320 11.3 18.1 20.7 16.5
LSA-640 9.6 10.1 13.8 11.3
RNN-80 9.3 5.2 30.4 16.2
RNN-320 18.2 19.0 45.0 28.5
RNN-640 21.0 25.2 54.8 34.7
RNN-1600 23.9 29.2 62.2 39.6

Table 2: Results for identifying syntactic regularities for
different word representations. Percent correct.

Method Adjectives Nouns Verbs All
RNN-80 10.1 8.1 30.4 19.0

CW-50 1.1 2.4 8.1 4.5
CW-100 1.3 4.1 8.6 5.0
HLBL-50 4.4 5.4 23.1 13.0
HLBL-100 7.6 13.2 30.2 18.7

Table 3: Comparison of RNN vectors with Turian’s Col-
lobert and Weston based vectors and the Hierarchical
Log-Bilinear model of Mnih and Hinton. Percent correct.

questions. Turian’s Collobert and Weston based vec-
tors do poorly on this task, whereas the Hierarchical
Log-Bilinear Model vectors of (Mnih and Hinton,
2009) do essentially as well as the RNN vectors.
These representations were trained on 37M words
of data and this may indicate a greater robustness of
the HLBL method.

We conducted similar experiments with the se-
mantic test set. For each target word pair in a rela-
tion category, the model measures its relational sim-
ilarity to each of the prototypical word pairs, and
then uses the average as the final score. The results
are evaluated using the two standard metrics defined
in the task, Spearman’s rank correlation coefficient
� and MaxDiff accuracy. In both cases, larger val-
ues are better. To compare to previous systems, we
report the average over all 69 relations in the test set.

From Table 4, we see that as with the syntac-
tic regularity study, the RNN-based representations
perform best. In this case, however, Turian’s CW
vectors are comparable in performance to the HLBL
vectors. With the RNN vectors, the performance im-
proves as the number of dimensions increases. Sur-
prisingly, we found that even though the RNN vec-

749

Mikolov, Tomáš, Wen-tau Yih, and Geoffrey Zweig. "Linguistic regularities in continuous space word representations." Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: 
Human language technologies. 2013. 
Bolukbasi, T., Chang, K. W., Zou, J. Y., Saligrama, V., & Kalai, A. T. (2016). Man is to computer programmer as woman is to homemaker? debiasing word embeddings. Advances in neural information processing systems, 29.

(a) Analogical Relations (metric space)

Previous papers mostly focus on word-level interpretations
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What Do Word Embeddings Embed?

Park, Sungjoon, JinYeong Bak, and Alice Oh. "Rotated word vector representations and their interpretability." Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. 2017.

(a) SG word projected to {a1,a2} and visualization of the vectors in 300 dimensions

(b) Rotated word vectors in {aR
1 ,aR

2 } and visualization of the vectors in 300 dimensions

Figure 1: Overview of rotating word vectors dimensions. We plot (a) unrotated and (b) rotated skip-
gram word vectors in 2-D projected embedding space using PCA (left), and visualization of the vectors
in original 300 dimensional space (right). Colors of words indicates the meaning of countries (Red)
and positions (Blue). As in (b), after the dimensions are rotated, interpretability for each dimensions is
improved having meaning of countries and positions.

tor representations work well by revealing a hid-
den structure of the original word vectors. That is,
it is meaningful to transform the hard-to-interpret
dimensions of the pre-built word vectors, which
are widely used, to more interpretable vectors. We
also show that the rotated vectors retain their effec-
tiveness with respect to downstream tasks without
re-building the vector representations.

Our method can be applied to any type of word
vectors as a post-processing method such that it
does not require a large corpus to be trained. In
addition, it does not require additional number of
dimensions so it does not increase the complexity
of the model. Furthermore, we explore the charac-
teristics of the rotated word vectors.

2 Factor Rotation

We take the rotation algorithm from the ex-
ploratory factor analysis (EFA) conducted to ver-
ify the construct validity of the psychological scale
in development. For example, when validating a

scale measuring respondents’ latent factors, such
as “Engineering problem solving” and “Interest in
engineering”, items should be similar within a fac-
tor, and distinguished between factors. As shown
in Table 1, EFA projects every item into the latent
factor space as an unrotated factor loading matrix.
However, since it is unclear what the factor means,
factor rotation is applied to the matrix that pro-
duces the rotated factor loading matrix which en-
hances the interpretability of the dimensions (Os-
borne, 2015).

2.1 Rotating Factors

The rotation algorithm transforms factor loading
matrix to the simple structure which is much eas-
ier to interpret (Thurstone, 1947). It involves post-
multiplication of a p ⇥ m input matrix A by an
m ⇥ m square matrix T , to compute the rotated
matrix ⇤,

⇤ = AT (1)

402

(b) Meaningful Dimensions (linear Space)

“Position” dim →

“country” dim →

Previous papers mostly focus on word-level interpretations
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What Do Word Embeddings Embed?
Previous papers mostly focus on word-level interpretations

Bolukbasi, T., Chang, K. W., Zou, J. Y., Saligrama, V., & Kalai, A. T. (2016). Man is to computer programmer as woman is to homemaker? debiasing word embeddings. Advances in neural information processing systems, 29.

(b) Meaningful Dimensions (linear Space)Figure 7: Selected words projected along two axes: x is a projection onto the difference between the
embeddings of the words he and she, and y is a direction learned in the embedding that captures gender
neutrality, with gender neutral words above the line and gender specific words below the line. Our hard
debiasing algorithm removes the gender pair associations for gender neutral words. In this figure, the words
above the horizontal line would all be collapsed to the vertical line.

����!
softball �

�����!
football) are shown in the table. Words such as receptionist, waitress and homemaker are closer to

softball than football, and the �’s between these words and softball is substantial (67%, 35%, 38%, respectively).
This suggests that the apparent similarity in the embeddings of these words to

����!
softball can be largely explained

by gender biases in the embedding. Similarly, businessman and maestro are closer to football and this can
also be attributed largely to indirect gender bias, with �’s of 31% and 42%, respectively.

6 Debiasing algorithms

The debiasing algorithms are defined in terms of sets of words rather than just pairs, for generality, so that
we can consider other biases such as racial or religious biases. We also assume that we have a set of words to
neutralize, which can come from a list or from the embedding as described in Section 7. (In many cases it
may be easier to list the gender specific words not to neutralize as this set can be much smaller.)

The first step, called Identify gender subspace, is to identify a direction (or, more generally, a subspace)
of the embedding that captures the bias. For the second step, we define two options: Neutralize and
Equalize or Soften. Neutralize ensures that gender neutral words are zero in the gender subspace.
Equalize perfectly equalizes sets of words outside the subspace and thereby enforces the property that any
neutral word is equidistant to all words in each equality set. For instance, if {grandmother, grandfather} and
{guy, gal} were two equality sets, then after equalization babysit would be equidistant to grandmother and
grandfather and also equidistant to gal and guy, but presumably closer to the grandparents and further from
the gal and guy. This is suitable for applications where one does not want any such pair to display any bias
with respect to neutral words.

The disadvantage of Equalize is that it removes certain distinctions that are valuable in certain applications.
For instance, one may wish a language model to assign a higher probability to the phrase to grandfather a
regulation) than to grandmother a regulation since grandfather has a meaning that grandmother does not –
equalizing the two removes this distinction. The Soften algorithm reduces the differences between these sets

11

gender neutral 

gender-related
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Word Embeddings in Causal LMs

x1 x2 x3 x4 x5 x6 x7

Input Word 
Embeddin
gs

e′￼x1
e′￼x2

e′￼x3
e′￼x4

e′￼x5
e′￼x6

e′￼x7

Contextual 
Vectors

Output 
Word 
Embedding
s

Causal/Generative Language Model

= E(e1, e2, ⋯en)

c(x1) c(x1, x2) ⋯

P(X2 |x1) P(X3 |x1, x2) ⋯

Text
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Output Word Embeddings
Projecting to Logits

Word Embeddings Are Steers for Language Models

Chi Han, Jialiang Xu, Manling Li, Yi Fung, Chenkai Sun,
Nan Jiang, Tarek Abdelzaher, Heng Ji
University of Illinois Urbana-Champaign
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Abstract

Language models (LMs) automatically learn
word embeddings during pre-training on lan-
guage corpora. Although word embeddings
are usually interpreted as feature vectors for
individual words, their roles in language model
generation remain underexplored. In this work,
we theoretically and empirically revisit out-
put word embeddings and find that their lin-
ear transformations are equivalent to steering
language model generation styles. We name
such steers LM-Steers and find them existing
in LMs of all sizes. It requires learning param-
eters equal to 0.2% of the original LMs’ size
for steering each style. On tasks such as lan-
guage model detoxification and sentiment con-
trol, LM-Steers can achieve comparable or su-
perior performance compared with state-of-the-
art controlled generation methods while main-
taining a better balance with generation qual-
ity. The learned LM-Steer serves as a lens in
text styles: it reveals that word embeddings are
interpretable when associated with language
model generations and can highlight text spans
that most indicate the style differences. An
LM-Steer is transferrable between different lan-
guage models by an explicit-form calculation.
One can also continuously steer LMs simply
by scaling the LM-Steer or compose multi-
ple LM-Steers by adding their transformations.
Our codes are publicly available at https:

//github.com/Glaciohound/LM-Steer. 1

1 Introduction

In recent years, language models (LMs) have sig-
nificantly advanced various natural language pro-
cessing (NLP) tasks such as machine translation,
sentiment analysis, schema induction, summariza-
tion, and sociocultural understanding (Brown et al.,
2020; Kojima et al.; Li et al., 2023b; Radford et al.,

1Please be advised that this paper contains potentially
controversial results and examples to some readers, included
solely for research purposes to explore model capabilities.

Language Model 
Hidden Layers

Language Model 
Hidden Layers

steering on output word embeddings

Original LM P0

Language Model 
Hidden Layers

Positively steered LM P�WNegatively steered LM P��W

e� v � (I � �W )ev e� v � ev e� v � (I + �W )ev

“My life is brilliant”“My life is boring” “My life is okay”

Figure 1: We find hidden steers in output word em-
beddings. By linearly transforming word embeddings,
language model generations are “steered” toward differ-
ent style polarity and levels.

2018; OpenAI, 2023; Fung et al., 2023, 2024).
Their output word embeddings are learned au-
tomatically to calculate word output likelihoods
during pre-training on language corpora. Typically,
the dot product c>ev between a computed context
vector and a learnable output word embedding ev

for token v is usually used as the word logit. The
word output probability is defined as the softmax
over all word logits:

P (v|c) =
exp(c>ev)P
u2V exp(c>eu)

, (1)

where V is the whole vocabulary. While being
a fundamental topic in natural language process-
ing, previous work on interpreting them is usually
focused at the word level, such as their semantic
information (Şenel et al., 2018), word senses (He-
witt et al., 2023), and analogical relations (Mikolov
et al., 2013; Park et al., 2017). However, as the
word embeddings are optimized for generation loss
during pre-training, the learned embedding space
should be closely associated with LMs’ generation
distributions. In this work, we propose to study the
roles that word embeddings play in LM generation,
which remains an underexplored topic, and ana-
lyze a simple while effective LM steering method
LM-Steer.
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Sequence Shift  Word Embedding Transform≈
• Theorem (Informal): steering between text distribution is 

associated with a linear transformation on word embedding space 
under assumptions.

pinit h1

T

v1

Bp′￼init

ev

…

E WE
linear transformation

state 
initialization 
changes

…

equivalent to
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LM-Steer
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+ = ϵ ⋅ W E

Language 
Model Hidden 
Layers

Output word 
embedding E

The steering 
scale the steering matrix

“       ” “       ”

for each word:
e′￼v = ev + ϵWev

W

ϵ W

Part 2: Physiology - Topic 2: Embedding



Training & Inference
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Continuous Steering
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Compositional Steering

LM-Steer 1: 


LM-Steer 2: 


Combined LM-Steer: 
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Compositional Steering
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Transferring to Another LM
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Highlighting Keywords

• Automatically highlighting text 
spans most related to a 
distribution.


• Example: toxic word highlighting

Dim. Matched Words

0 mor, bigot, Stupid, retarded, coward, stupid, loser, clown, dumb, Dumb, losers, stupidity,
garbage , idiots, fools, idiot, lame

1 stupid, idiot, Stupid, idiots, jerk, pathetic, suck, buff, stupidity, mor, damn, ignorant, fools,
dumb , disgusting , damned, narcissistic, troll

3 idiot, godd, damn,

5 Balk, lur, looms, hides, shadows, Whites, slippery, winds

7 bullshit, fiat, shit, lies, injust, manipulation

8 disabled, inactive, whip, emo, partisan, spew, bombed, disconnected, gun, failing, Republi-
cans , defeated, Jeb, blowing , bombard, ineffective, reload, destructive, flo, blown

9 winners, upside

Table 6: Word embedding dimensions that are most influenced by LM-Steer on detoxification task.

There’s another controversial Hollywood racial
decision that Stacey Dash is sinking her teeth into.

The UFC champ then suggested Justino is a
longtime PED user with her most d**ning com-
ments.

But I really have a question for you: Why would
I go on a game show and play into the bulls**t
allowing myself to be ranked by some fake com-
petition?

I think sexism prevents this from being a real
win for fat people.

If they want to be fair and non
hypocritical idiots they should.

Table 7: Toxic sentences with toxic keywords high-
lighted by LM-Steer after training detoxification on
GPT2-Large.

5.3 Transfering LM-Steer Between Models
A much-desired property of LM-Steer, because of
its theoretical soundness, is its transferability to
other language models. Details and derivations of
LM-Steer transfer are in Appendix F. Intuitively
speaking, the original logit c>ev can be understood
as a similarity or matching metric between context
vector c and word embedding ev. In LM-Steer,
the logit is offset by ✏ times c

>
Wev, which is

also a bilinear similarity. To transform this LM-
Steer to another language model, we need to map
the context vectors and word embeddings between
word embedding spaces ev = He

0
v

c
>
Wev = (Hc

0)>W (He
0
v) = c

0>(H>
WH)e0v

(3)

We work by first identifying a linear mapping H

from target LM word embeddings to source LM
word embeddings. Then, the matrix H

>
WH can

be inserted into the target LM as LM-Steer. This is
motivated by prior work on the linear mapping be-
tween word embeddings from different models (Li
et al., 2021). Finally, the calculated steering matrix
is directly applied to the target LM. Figure 5(a)
shows the performance after we transfer the LM-
Steer learned on GPT2-large to LMs of other sizes,
ranging from gpt2 (124M) to GPT-J-6B (6B). We
can see a uniform improvement in transferred LM-
Steers, with GPT2 and GPT2-medium getting sim-
ilar scores (0.307 and 0.308) to the best baseline
(DExperts).

6 Conclusions
In this work, we discover the prevalent phe-
nomenon of word embeddings containing steers for
language model generation. We demonstrate the
promise and efficacy of LM-Steer, a theoretically
grounded, simple, and lightweight approach for the
steering of generative language models. LM-Steer
can model various styles and achieve comparable
or superior performance to baselines in language
model detoxification and generation control. LM-
Steer also allows for continuous and compositional
control and can be transferred to other language
models. More importantly, it provides an inter-
pretation of how word embeddings interplay with
language model generation. So far, we have only
studied output word embeddings, so it is intriguing
to ask whether similar phenomena apply to other
components, such as input word embeddings and
hidden layers.

Han, Chi, et al. "Word Embeddings Are Steers for Language Models." Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2024. (Outstanding Paper Award)
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A Probe on the Word Embedding Space

(Some dimensions were omitted as they match non-English 
words)

personal 


political

curses

critiques
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Room for Future Research

• Evolution of contextual embeddings across layers, e.g., how ambiguity is 
resolved in LMs


• Better frameworks for studying the role of word embeddings


• Other functions of word embeddings, such as semantics and sense
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Rules and Laws of LMs

Topics


• Scaling:  How performance scales


• Impossibilities: What LMs cannot do fundamentally
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Scaling: How Performance 
Scales
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General Principle

Inducing rules from simplified and controlled experiments (similar to 
early ages of physics).

https://en.wikipedia.org/wiki/File:Galileolarge.png
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Scaling Laws
Is Model Performance Predictable?

In physics:

Observation: 
larger force + smaller 
weight  moving faster→

Newton’s Law: 

F = ma
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Scaling Laws
Is Model Performance Predictable?

In physics:

Observation: 
larger force + smaller 
weight  moving faster→

Newton’s Law: 

F = ma

Observation: 
larger model + more data 

 higher score→

In LMs:

Any law to predict 
scores before 
training?
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Why Do We Need Scaling Laws?
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Why Do We Need Scaling Laws?
1. Curiosity
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Why Do We Need Scaling Laws?
1. Curiosity

2. Early debugging
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Why Do We Need Scaling Laws?
1. Curiosity

2. Early debugging

time

score
predicted

actual
something 
wrong 
here!
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Why Do We Need Scaling Laws?
1. Curiosity

2. Early debugging

3. Better allocation of the resources

time

score
predicted

actual
something 
wrong 
here!
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Why Do We Need Scaling Laws?
1. Curiosity

2. Early debugging

3. Better allocation of the resources

time

score
predicted

actual
something 
wrong 
here!
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Law on Data Size Seen During Training

Kaplan, Jared, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. "Scaling laws for neural language models." arXiv preprint arXiv:2001.08361 (2020).

Figure 4 Left: The early-stopped test loss L(N,D) varies predictably with the dataset size D and model
size N according to Equation (1.5). Right: After an initial transient period, learning curves for all model
sizes N can be fit with Equation (1.6), which is parameterized in terms of Smin, the number of steps when
training at large batch size (details in Section 5.1).

These relations hold across eight orders of magnitude in Cmin, six orders of magnitude in N , and over two
orders of magnitude in D. They depend very weakly on model shape and other Transformer hyperparameters
(depth, width, number of self-attention heads), with specific numerical values associated with the Webtext2
training set [RWC+19]. The power laws ↵N,↵D,↵min

C specify the degree of performance improvement
expected as we scale up N , D, or Cmin; for example, doubling the number of parameters yields a loss that
is smaller by a factor 2�↵N = 0.95. The precise numerical values of Nc, Cmin

c , and Dc depend on the
vocabulary size and tokenization and hence do not have a fundamental meaning.

The critical batch size, which determines the speed/efficiency tradeoff for data parallelism ([MKAT18]), also
roughly obeys a power law in L:

Bcrit (L) =
B⇤

L1/↵B
, B⇤ ⇠ 2 · 108 tokens, ↵B ⇠ 0.21 (1.4)

Equation (1.1) and (1.2) together suggest that as we increase the model size, we should increase the dataset
size sublinearly according to D / N

↵N
↵D ⇠ N0.74. In fact, we find that there is a single equation combining

(1.1) and (1.2) that governs the simultaneous dependence on N and D and governs the degree of overfitting:

L(N,D) =

"✓
Nc

N

◆↵N
↵D

+
Dc

D

#↵D

(1.5)

with fits pictured on the left in figure 4. We conjecture that this functional form may also parameterize the
trained log-likelihood for other generative modeling tasks.

When training a given model for a finite number of parameter update steps S in the infinite data limit, after
an initial transient period, the learning curves can be accurately fit by (see the right of figure 4)

L(N,S) =

✓
Nc

N

◆↵N

+

✓
Sc

Smin(S)

◆↵S

(1.6)

where Sc ⇡ 2.1 ⇥ 103 and ↵S ⇡ 0.76, and Smin(S) is the minimum possible number of optimization steps
(parameter updates) estimated using Equation (5.4).

When training within a fixed compute budget C, but with no other constraints, Equation (1.6) leads to the
prediction that the optimal model size N , optimal batch size B, optimal number of steps S, and dataset size
D should grow as

N / C↵min
C /↵N , B / C↵min

C /↵B , S / C↵min
C /↵S , D = B · S (1.7)

with
↵min
C = 1/ (1/↵S + 1/↵B + 1/↵N ) (1.8)

which closely matches the empirically optimal results N / C0.73
min , B / C0.24

min , and S / C0.03
min . As the

computational budget C increases, it should be spent primarily on larger models, without dramatic increases
in training time or dataset size (see Figure 3). This also implies that as models grow larger, they become
increasingly sample efficient. In practice, researchers typically train smaller models for longer than would
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To observe these trends it is crucial to study performance as a function of N ; if we instead use the total
parameter count (including the embedding parameters) the trend is somewhat obscured (see Figure 6). This
suggests that the embedding matrix can be made smaller without impacting performance, as has been seen in
recent work [LCG+19].

Although these models have been trained on the WebText2 dataset, their test loss on a variety of other datasets
is also a power-law in N with nearly identical power, as shown in Figure 8.

3.2.1 Comparing to LSTMs and Universal Transformers

In Figure 7 we compare LSTM and Transformer performance as a function of non-embedding parameter
count N . The LSTMs were trained with the same dataset and context length. We see from these figures
that the LSTMs perform as well as Transformers for tokens appearing early in the context, but cannot match
the Transformer performance for later tokens. We present power-law relationships between performance and
context position Appendix D.5, where increasingly large powers for larger models suggest improved ability
to quickly recognize patterns.

We also compare the performance of standard Transformers to recurrent Transformers [DGV+18] in Figure
17 in the appendix. These models re-use parameters, and so perform slightly better as a function of N , at the
cost of additional compute per-parameter.

3.2.2 Generalization Among Data Distributions

We have also tested our models on a set of additional text data distributions. The test loss on these datasets
as a function of model size is shown in Figure 8; in all cases the models were trained only on the WebText2
dataset. We see that the loss on these other data distributions improves smoothly with model size, in direct
parallel with the improvement on WebText2. We find that generalization depends almost exclusively on the
in-distribution validation loss, and does not depend on the duration of training or proximity to convergence.
We also observe no dependence on model depth (see Appendix D.8).

3.3 Performance with Dataset Size and Compute

We display empirical trends for the test loss as a function of dataset size D (in tokens) and training compute
C in Figure 1.

For the trend with D we trained a model with (nlayer, nembd) = (36, 1280) on fixed subsets of the WebText2
dataset. We stopped training once the test loss ceased to decrease. We see that the resulting test losses can be
fit with simple power-law

L(D) ⇡
✓
Dc

D

◆↵D

(3.2)

in the dataset size. The data and fit appear in Figure 1.

The total amount of non-embedding compute used during training can be estimated as C = 6NBS, where
B is the batch size, S is the number of parameter updates, and the factor of 6 accounts for the forward and
backward passes. Thus for a given value of C we can scan over all models with various N to find the model
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Law on Model Size
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Figure 5 Performance depends very mildly on model shape when the total number of non-embedding
parameters N is held fixed. The loss varies only a few percent over a wide range of shapes. Small differences
in parameter counts are compensated for by using the fit to L(N) as a baseline. Aspect ratio in particular can
vary by a factor of 40 while only slightly impacting performance; an (nlayer, dmodel) = (6, 4288) reaches a
loss within 3% of the (48, 1600) model used in [RWC+19].

Figure 6 Left: When we include embedding parameters, performance appears to depend strongly on the
number of layers in addition to the number of parameters. Right: When we exclude embedding parameters,
the performance of models with different depths converge to a single trend. Only models with fewer than 2
layers or with extreme depth-to-width ratios deviate significantly from the trend.

In this section we will display data along with empirically-motivated fits, deferring theoretical analysis to
later sections.

3.1 Approximate Transformer Shape and Hyperparameter Independence

Transformer performance depends very weakly on the shape parameters nlayer, nheads, and d↵ when we hold
the total non-embedding parameter count N fixed. To establish these results we trained models with fixed
size while varying a single hyperparameter. This was simplest for the case of nheads. When varying nlayer,
we simultaneously varied dmodel while keeping N ⇡ 12nlayerd2model fixed. Similarly, to vary d↵ at fixed
model size we also simultaneously varied the dmodel parameter, as required by the parameter counts in Table
1. Independence of nlayers would follow if deeper Transformers effectively behave as ensembles of shallower
models, as has been suggested for ResNets [VWB16]. The results are shown in Figure 5.

3.2 Performance with Non-Embedding Parameter Count N

In Figure 6 we display the performance of a wide variety of models, ranging from small models with shape
(nlayer, dmodel) = (2, 128) through billion-parameter models, ranging in shape from (6, 4288) through
(207, 768). Here we have trained to near convergence on the full WebText2 dataset and observe no over-
fitting (except possibly for the very largest models).

As shown in Figure 1, we find a steady trend with non-embedding parameter count N , which can be fit to the
first term of Equation (1.5), so that

L(N) ⇡
✓
Nc

N

◆↵N

(3.1)
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Figure 5 Performance depends very mildly on model shape when the total number of non-embedding
parameters N is held fixed. The loss varies only a few percent over a wide range of shapes. Small differences
in parameter counts are compensated for by using the fit to L(N) as a baseline. Aspect ratio in particular can
vary by a factor of 40 while only slightly impacting performance; an (nlayer, dmodel) = (6, 4288) reaches a
loss within 3% of the (48, 1600) model used in [RWC+19].

Figure 6 Left: When we include embedding parameters, performance appears to depend strongly on the
number of layers in addition to the number of parameters. Right: When we exclude embedding parameters,
the performance of models with different depths converge to a single trend. Only models with fewer than 2
layers or with extreme depth-to-width ratios deviate significantly from the trend.

In this section we will display data along with empirically-motivated fits, deferring theoretical analysis to
later sections.

3.1 Approximate Transformer Shape and Hyperparameter Independence

Transformer performance depends very weakly on the shape parameters nlayer, nheads, and d↵ when we hold
the total non-embedding parameter count N fixed. To establish these results we trained models with fixed
size while varying a single hyperparameter. This was simplest for the case of nheads. When varying nlayer,
we simultaneously varied dmodel while keeping N ⇡ 12nlayerd2model fixed. Similarly, to vary d↵ at fixed
model size we also simultaneously varied the dmodel parameter, as required by the parameter counts in Table
1. Independence of nlayers would follow if deeper Transformers effectively behave as ensembles of shallower
models, as has been suggested for ResNets [VWB16]. The results are shown in Figure 5.

3.2 Performance with Non-Embedding Parameter Count N

In Figure 6 we display the performance of a wide variety of models, ranging from small models with shape
(nlayer, dmodel) = (2, 128) through billion-parameter models, ranging in shape from (6, 4288) through
(207, 768). Here we have trained to near convergence on the full WebText2 dataset and observe no over-
fitting (except possibly for the very largest models).

As shown in Figure 1, we find a steady trend with non-embedding parameter count N , which can be fit to the
first term of Equation (1.5), so that

L(N) ⇡
✓
Nc

N

◆↵N

(3.1)
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To observe these trends it is crucial to study performance as a function of N ; if we instead use the total
parameter count (including the embedding parameters) the trend is somewhat obscured (see Figure 6). This
suggests that the embedding matrix can be made smaller without impacting performance, as has been seen in
recent work [LCG+19].

Although these models have been trained on the WebText2 dataset, their test loss on a variety of other datasets
is also a power-law in N with nearly identical power, as shown in Figure 8.

3.2.1 Comparing to LSTMs and Universal Transformers

In Figure 7 we compare LSTM and Transformer performance as a function of non-embedding parameter
count N . The LSTMs were trained with the same dataset and context length. We see from these figures
that the LSTMs perform as well as Transformers for tokens appearing early in the context, but cannot match
the Transformer performance for later tokens. We present power-law relationships between performance and
context position Appendix D.5, where increasingly large powers for larger models suggest improved ability
to quickly recognize patterns.

We also compare the performance of standard Transformers to recurrent Transformers [DGV+18] in Figure
17 in the appendix. These models re-use parameters, and so perform slightly better as a function of N , at the
cost of additional compute per-parameter.

3.2.2 Generalization Among Data Distributions

We have also tested our models on a set of additional text data distributions. The test loss on these datasets
as a function of model size is shown in Figure 8; in all cases the models were trained only on the WebText2
dataset. We see that the loss on these other data distributions improves smoothly with model size, in direct
parallel with the improvement on WebText2. We find that generalization depends almost exclusively on the
in-distribution validation loss, and does not depend on the duration of training or proximity to convergence.
We also observe no dependence on model depth (see Appendix D.8).

3.3 Performance with Dataset Size and Compute

We display empirical trends for the test loss as a function of dataset size D (in tokens) and training compute
C in Figure 1.

For the trend with D we trained a model with (nlayer, nembd) = (36, 1280) on fixed subsets of the WebText2
dataset. We stopped training once the test loss ceased to decrease. We see that the resulting test losses can be
fit with simple power-law

L(D) ⇡
✓
Dc

D

◆↵D

(3.2)

in the dataset size. The data and fit appear in Figure 1.

The total amount of non-embedding compute used during training can be estimated as C = 6NBS, where
B is the batch size, S is the number of parameter updates, and the factor of 6 accounts for the forward and
backward passes. Thus for a given value of C we can scan over all models with various N to find the model
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Can Laws Be Unified?

L(N, D) = E +
A
Nα

+
B

Dβ

Figure 4 | Parametric fit. We fit a parametric modelling of the loss 𝐿(𝑀, 𝑁) and display contour (left)
and isoFLOP slices (right). For each isoFLOP slice, we include a corresponding dashed line in the left
plot. In the left plot, we show the efficient frontier in blue, which is a line in log-log space. Specifically,
the curve goes through each iso-loss contour at the point with the fewest FLOPs. We project the
optimal model size given the Gopher FLOP budget to be 40B parameters.

Efficient frontier. We can approximate the functions 𝑀𝑂𝑃𝑄 and 𝑁𝑂𝑃𝑄 by minimizing the parametric
loss 𝐿 under the constraint FLOPs(𝑀, 𝑁) ≈ 6𝑀𝑁 (Kaplan et al., 2020). The resulting 𝑀𝑂𝑃𝑄 and 𝑁𝑂𝑃𝑄

balance the two terms in Equation (3) that depend on model size and data. By construction, they
have a power-law form:

𝑀𝑂𝑃𝑄 (𝑅) = 𝑆

(
𝑅

6

)𝑇
, 𝑁𝑂𝑃𝑄 (𝑅) = 𝑆−1

(
𝑅

6

)𝑈
, where 𝑆 =

(
𝑉𝑊

𝑋𝑌

) 1
𝑉+𝑋

, 𝑇 =
𝑋

𝑉 + 𝑋
, and 𝑈 =

𝑉

𝑉 + 𝑋
. (4)

We show contours of the fitted function 𝐿 in Figure 4 (left), and the closed-form efficient computational
frontier in blue. From this approach, we find that 𝑇 = 0.46 and 𝑈 = 0.54—as summarized in Table 2.

3.4. Optimal model scaling

We find that the three approaches, despite using different fitting methodologies and different trained
models, yield comparable predictions for the optimal scaling in parameters and tokens with FLOPs
(shown in Table 2). All three approaches suggest that as compute budget increases, model size and
the amount of training data should be increased in approximately equal proportions. The first and
second approaches yield very similar predictions for optimal model sizes, as shown in Figure 1 and
Figure A3. The third approach predicts even smaller models being optimal at larger compute budgets.
We note that the observed points (𝐿, 𝑀, 𝑁) for low training FLOPs (𝑅 ! 1𝑍21) have larger residuals
‖𝐿 − 𝐿(𝑀, 𝑁)‖

2
2 than points with higher computational budgets. The fitted model places increased

weight on the points with more FLOPs—automatically considering the low-computational budget
points as outliers due to the Huber loss. As a consequence of the empirically observed negative
curvature in the frontier 𝑅 → 𝑀𝑂𝑃𝑄 (see Appendix E), this results in predicting a lower 𝑀𝑂𝑃𝑄 than the
two other approaches.

In Table 3 we show the estimated number of FLOPs and tokens that would ensure that a model of
a given size lies on the compute-optimal frontier. Our findings suggests that the current generation of
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Hoffmann, Jordan, et al. "Training compute-optimal large language models." arXiv preprint arXiv:2203.15556 (2022).
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Optimal Resource Allocation by Laws

Hoffmann, Jordan, et al. "Training compute-optimal large language models." arXiv preprint arXiv:2203.15556 (2022).

Figure 4 | Parametric fit. We fit a parametric modelling of the loss 𝐿(𝑀, 𝑁) and display contour (left)
and isoFLOP slices (right). For each isoFLOP slice, we include a corresponding dashed line in the left
plot. In the left plot, we show the efficient frontier in blue, which is a line in log-log space. Specifically,
the curve goes through each iso-loss contour at the point with the fewest FLOPs. We project the
optimal model size given the Gopher FLOP budget to be 40B parameters.
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We show contours of the fitted function 𝐿 in Figure 4 (left), and the closed-form efficient computational
frontier in blue. From this approach, we find that 𝑇 = 0.46 and 𝑈 = 0.54—as summarized in Table 2.

3.4. Optimal model scaling

We find that the three approaches, despite using different fitting methodologies and different trained
models, yield comparable predictions for the optimal scaling in parameters and tokens with FLOPs
(shown in Table 2). All three approaches suggest that as compute budget increases, model size and
the amount of training data should be increased in approximately equal proportions. The first and
second approaches yield very similar predictions for optimal model sizes, as shown in Figure 1 and
Figure A3. The third approach predicts even smaller models being optimal at larger compute budgets.
We note that the observed points (𝐿, 𝑀, 𝑁) for low training FLOPs (𝑅 ! 1𝑍21) have larger residuals
‖𝐿 − 𝐿(𝑀, 𝑁)‖
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2 than points with higher computational budgets. The fitted model places increased

weight on the points with more FLOPs—automatically considering the low-computational budget
points as outliers due to the Huber loss. As a consequence of the empirically observed negative
curvature in the frontier 𝑅 → 𝑀𝑂𝑃𝑄 (see Appendix E), this results in predicting a lower 𝑀𝑂𝑃𝑄 than the
two other approaches.

In Table 3 we show the estimated number of FLOPs and tokens that would ensure that a model of
a given size lies on the compute-optimal frontier. Our findings suggests that the current generation of
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Chinchilla’s Law for Model and Data Size

Figure 3 | IsoFLOP curves. For various model sizes, we choose the number of training tokens such
that the final FLOPs is a constant. The cosine cycle length is set to match the target FLOP count. We
find a clear valley in loss, meaning that for a given FLOP budget there is an optimal model to train
(left). Using the location of these valleys, we project optimal model size and number of tokens for
larger models (center and right). In green, we show the estimated number of parameters and tokens
for an optimal model trained with the compute budget of Gopher.

For each FLOP budget, we plot the final loss (after smoothing) against the parameter count in
Figure 3 (left). In all cases, we ensure that we have trained a diverse enough set of model sizes to see
a clear minimum in the loss. We fit a parabola to each IsoFLOPs curve to directly estimate at what
model size the minimum loss is achieved (Figure 3 (left)). As with the previous approach, we then fit
a power law between FLOPs and loss-optimal model size and number of training tokens, shown in
Figure 3 (center, right). Again, we fit exponents of the form 𝐿𝑀𝑁𝑂 ∝ 𝑃𝑄 and 𝑅𝑀𝑁𝑂 ∝ 𝑃𝑆 and we find that
𝑄 = 0.49 and 𝑆 = 0.51—as summarized in Table 2.

3.3. Approach 3: Fitting a parametric loss function

Lastly, we model all final losses from experiments in Approach 1 & 2 as a parametric function of
model parameter count and the number of seen tokens. Following a classical risk decomposition (see
Section D.2), we propose the following functional form

𝑇(𝐿, 𝑅) ! 𝑈 +
𝑉

𝐿𝑊 +
𝑋

𝑅𝑌
. (2)

The first term captures the loss for an ideal generative process on the data distribution, and should
correspond to the entropy of natural text. The second term captures the fact that a perfectly trained
transformer with 𝐿 parameters underperforms the ideal generative process. The final term captures
the fact that the transformer is not trained to convergence, as we only make a finite number of
optimisation steps, on a sample of the dataset distribution.

Model fitting. To estimate (𝑉, 𝑋, 𝑈, 𝑊, 𝑌), we minimize the Huber loss (Huber, 1964) between the
predicted and observed log loss using the L-BFGS algorithm (Nocedal, 1980):

min
𝑉,𝑋,𝑈,𝑊,𝑌

∑
Runs 𝑍

Huber𝑎
(
log 𝑇(𝐿𝑍, 𝑅𝑍) − log 𝑇𝑍

)
(3)

We account for possible local minima by selecting the best fit from a grid of initialisations. The Huber
loss (𝑎 = 10−3) is robust to outliers, which we find important for good predictive performance over
held-out data points. Section D.2 details the fitting procedure and the loss decomposition.
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Figure 4 Left: The early-stopped test loss L(N,D) varies predictably with the dataset size D and model
size N according to Equation (1.5). Right: After an initial transient period, learning curves for all model
sizes N can be fit with Equation (1.6), which is parameterized in terms of Smin, the number of steps when
training at large batch size (details in Section 5.1).

These relations hold across eight orders of magnitude in Cmin, six orders of magnitude in N , and over two
orders of magnitude in D. They depend very weakly on model shape and other Transformer hyperparameters
(depth, width, number of self-attention heads), with specific numerical values associated with the Webtext2
training set [RWC+19]. The power laws ↵N,↵D,↵min

C specify the degree of performance improvement
expected as we scale up N , D, or Cmin; for example, doubling the number of parameters yields a loss that
is smaller by a factor 2�↵N = 0.95. The precise numerical values of Nc, Cmin

c , and Dc depend on the
vocabulary size and tokenization and hence do not have a fundamental meaning.

The critical batch size, which determines the speed/efficiency tradeoff for data parallelism ([MKAT18]), also
roughly obeys a power law in L:

Bcrit (L) =
B⇤

L1/↵B
, B⇤ ⇠ 2 · 108 tokens, ↵B ⇠ 0.21 (1.4)

Equation (1.1) and (1.2) together suggest that as we increase the model size, we should increase the dataset
size sublinearly according to D / N

↵N
↵D ⇠ N0.74. In fact, we find that there is a single equation combining

(1.1) and (1.2) that governs the simultaneous dependence on N and D and governs the degree of overfitting:

L(N,D) =

"✓
Nc

N

◆↵N
↵D

+
Dc

D

#↵D

(1.5)

with fits pictured on the left in figure 4. We conjecture that this functional form may also parameterize the
trained log-likelihood for other generative modeling tasks.

When training a given model for a finite number of parameter update steps S in the infinite data limit, after
an initial transient period, the learning curves can be accurately fit by (see the right of figure 4)

L(N,S) =

✓
Nc

N

◆↵N

+

✓
Sc

Smin(S)

◆↵S

(1.6)

where Sc ⇡ 2.1 ⇥ 103 and ↵S ⇡ 0.76, and Smin(S) is the minimum possible number of optimization steps
(parameter updates) estimated using Equation (5.4).

When training within a fixed compute budget C, but with no other constraints, Equation (1.6) leads to the
prediction that the optimal model size N , optimal batch size B, optimal number of steps S, and dataset size
D should grow as

N / C↵min
C /↵N , B / C↵min

C /↵B , S / C↵min
C /↵S , D = B · S (1.7)

with
↵min
C = 1/ (1/↵S + 1/↵B + 1/↵N ) (1.8)

which closely matches the empirically optimal results N / C0.73
min , B / C0.24

min , and S / C0.03
min . As the

computational budget C increases, it should be spent primarily on larger models, without dramatic increases
in training time or dataset size (see Figure 3). This also implies that as models grow larger, they become
increasingly sample efficient. In practice, researchers typically train smaller models for longer than would

5

Chinchilla Kaplan

Scaling ratio =  α/β ≈ 1 : 1 Scaling ratio = αN /αD ≈ 3 : 1

Hoffmann, Jordan, et al. "Training compute-optimal large language models." arXiv preprint arXiv:2203.15556 (2022).
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The Knowledge Capacity Scaling Law

(a) bioS(N) data — 1000 exposures — peak R(F ) → 2 (b) bioS(N) data — 100 exposures — peak R(F ) → 1

Figure 1: Scaling laws for GPT2 pretrained on bioS(N) data using fp16 (mixed-precision) for 1000/100 exposures.

Conclusion. The peak capacity ratios consistently exceed R(F ) → 2 (resp. → 1) for 1000 exposures (resp.
100 exposures) of pretraining on each knowledge piece, regardless of model depth/size.

Remarks. Each dot ω-h represents GPT2 with ω layers, h heads, and 64d dimensions. The learned
knowledge is calculated by the bit-complexity lower bound Theorem 3.2. The appendix also includes:
Figure 11 showing similar results for bioSsimple(N) and bioR(N) data, Figure 14 demonstrating that the
same holds for quantization using int8, Figure 10 confirming full extractability of all learned knowledge.13

Larger models? Training GPT2-20-16 on bioS(10M) for 1000 exposures costs 8.5 days with 64 A100s,
while GPT2-12-32 on bioS(20M) for 100 exposures took 2.4 days. In our synthetic setting, we see no need
to scale up further. Instead, we prefer to allocate GPUs to explore other aspects covered in this paper.

Remark 4.2. One must have R(F ) → Rmax(F ), and equality is obtained if the model is perfect. For
a fixed dataset, further increases in model size do not yield additional knowledge, thus Rmax(F )
approaches zero as the model size P increases. On the other hand, Theorem 3.2 implies, ignoring
lower-order terms, that if the model parameters are 8-bit (such as int8), then R(F ) → 8.

For our bioS(N) data, we define a slightly reduced capacity ratio by omitting the diversity term.11

Definition 4.3. Given a model F with P parameters trained over the bioS(N) dataset Z, suppose
it gives p1 = lossname(Z) and p2 = lossvalue(Z), its capacity ratio12

R(F )
def
=

N log2
N0
ep1 +N log2

S0
ep2

P
and Rmax(F )

def
=

N log2
N0
N +N log2 S0

P

for N0 = 400↑ 400↑ 1000 and S0 = 2↑ (12 · 28 · 200)↑ 200↑ 300↑ 100↑ 263 (c.f. Footnote 9).

Remark 4.4. Ignoring names, each person contains log2(S0) ↓ 47.6 bits of knowledge.

5 Base Scaling Laws

11A version of Theorem 3.2 can be proven for this dataset with a simpler proof, as it excludes the diversity set. This
could also mean the model has full prior knowledge of the diversity set (e.g., assuming a fixed set of 300 university
names) without counting this knowledge towards its learned bits.

12Here, one can let K = {birth date, birth city, university,major, employer, gender} and accordingly define

lossvalue(Z)
def
= En→N

∑
a→K ↑ logPrR

[
F↑(W (Z), n, a,R) = vω(n, a)

]
.

13A distinction exists between memorizable knowledge (e.g., text memorized during pretraining) and knowledge
flexibly extractable via instruction fine-tuning [3]; our results in this paper apply to both.
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Under ideal conditions, LMs store 2 bits of knowledge / parameter.

Allen-Zhu, Zeyuan, and Yuanzhi Li. "Physics of Language Models: Part 3.3, Knowledge Capacity Scaling Laws." The Thirteenth International Conference on Learning Representations.
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Factors in Knowledge Storage

• More exposure in training helps

• MLP improves capacity

• Mild quantization is okay

• Low-quality data hurts storage ratio

Allen-Zhu, Zeyuan, and Yuanzhi Li. "Physics of Language Models: Part 3.3, Knowledge Capacity Scaling Laws." The Thirteenth International Conference on Learning Representations.
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Downstream Performance Scales with Training Compute

Chen, Yangyi, et al. "Scaling laws for predicting downstream performance in LLMs." arXiv preprint arXiv:2410.08527 (2024).

Schaeffer, Rylan, Brando Miranda, and Sanmi Koyejo. "Are emergent abilities of large language models a mirage?." Advances in Neural Information Processing Systems 36 (2023): 55565-55581.

Observation: scaling law contains more parameters

Potential Cause: non-linearity nature of metric functions[Schaeffer, et al.]

Acc =
a

1 + exp (−k(AN−α + BD−β + E))
+ b

Preprint

Establishing Task Scaling Laws via Compute-Efficient Model
Ladders
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Abstract

We develop task scaling laws and model ladders to predict the individual
task performance of pretrained language models (LMs) in the overtrained
setting. Standard power laws for language modeling loss cannot accurately
model task performance. Therefore, we leverage a two-step prediction
approach: first use model and data size to predict a task-specific loss,
and then use this task loss to predict task performance. We train a set of
small-scale “ladder” models, collect data points to fit the parameterized
functions of the two prediction steps, and make predictions for two target
models: a 7B model trained to 4T tokens and a 13B model trained to 5T
tokens. Training the ladder models only costs 1% of the compute used
for the target models. On four multiple-choice tasks written in ranked
classification format, we can predict the accuracy of both target models
within 2 points of absolute error. We have higher prediction error on four
other tasks (average absolute error 6.9) and find that these are often tasks
with higher variance in task metrics. We also find that using less compute
to train fewer ladder models tends to deteriorate predictions. Finally, we
empirically show that our design choices and the two-step approach lead
to superior performance in establishing scaling laws.

Figure 1: Predicting MMLU accuracy with our method. We first use model size and data size
to predict a “task loss” on MMLU (step 1), and then use this task loss to predict task accuracy
in ranked classification format (step 2). The chained plot shows end-to-end prediction from
(model size, data size) to task accuracy. The functions in step 1 and 2 are fitted on data points
collected from ladder models (markers colored in red, orange, green and cyan); 7B-4T and
13B-5T are the target models which we make predictions for. We report relative prediction
error in the plot next to the target model point.
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Future & Active Areas for Exploration

1. Does a unified law exist for all factors (i.e., how they interact )?


2. What causes these laws and the constants?


3. Scaling laws for/including other factors, like tokenizer, training precision, 
context length, data quality, composition, and diversity?


4. Scaling law for different model architectures (e.g., MoE, non-Transformer 
models, etc.)
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What LMs Cannot Do 
Fundamentally

Part 3: Physics - Topic 2: Impossibilities



Wolf, Yotam, et al. "Fundamental Limitations of Alignment in Large Language Models." Forty-first International Conference on Machine Learning.

Realistic Alignment Is Always Attackable
Assumption: LM models a mixture of ill- and well-behaved 
components, and they are distinguishable

Theorem 1: With a long enough adversarial prompt, the ill behavior can 
be prompted from the LM.

(disclaimer: simplified claims)

Part 3: Physics - Topic 2: Impossibilities



Wolf, Yotam, et al. "Fundamental Limitations of Alignment in Large Language Models." Forty-first International Conference on Machine Learning.

Realistic Alignment Is Always Attackable
Assumption: LM models a mixture of ill- and well-behaved 
components, and they are distinguishable

Theorem 1: With a long enough adversarial prompt, the ill behavior can 
be prompted from the LM.

(disclaimer: simplified claims)

Part 3: Physics - Topic 2: Impossibilities

Theorem 2: Even in the presence of a safety system prompt, it is 
possible to prompt the LLM into the ill behavior with a long enough 
appending prompt.



Wolf, Yotam, et al. "Fundamental Limitations of Alignment in Large Language Models." Forty-first International Conference on Machine Learning.

Realistic Alignment Is Always Attackable

Preprint. Under review.

WARNING, THE FOLLOWING CONTAINS HIGHLY OFFENSIVE CONTENT.

Figure 12: Figures demonstrating misalignment based on behavior expectation for different behaviors.
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Calibrated Language Models Must Hallucinate

Kalai, Adam Tauman, and Santosh S. Vempala. "Calibrated language models must hallucinate." Proceedings of the 56th Annual ACM Symposium on Theory of Computing. 2024.

(disclaimer: simplified claims)

Assumption: LM is well-calibrated on a finite training corpus, and 
sufficiently large training data, and if number of possible hallucinations 
greatly outweigh facts

Theorem: when the assumptions above hold, the LM is 
doomed to hallucinate.
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Calibrated Language Models Must Hallucinate

Achiam, Josh, et al. "Gpt-4 technical report." arXiv preprint arXiv:2303.08774 (2023).
Figure 1: GPT-4 calibration curves before (left) and after (right) reinforcement learning (OpenAI,
2023, Figure 8, reprinted with permission). As suggested by our model, post-training reduces
hallucination rates at the cost of increasing calibration error. Note that calibration here is on a
multiple-choice test rather than generative calibration which we study.

2 Related work

As discussed in the introduction, the concept of calibration was introduced by Dawid (1982) and
has been extensively studied in statistics and machine learning and even specifically for LMs
(Braverman et al., 2020; Zhao et al., 2021; Jiang et al., 2021) and other related fields of deep learning
and generative AI (Rohrbach et al., 2018; Maynez et al., 2020). B!lasiok et al. (2023) argue that
calibration happens naturally as a byproduct of minimizing log-loss for deep neural networks, though
their results are for a di”erent architecture and di”erent notion of calibration.

Unfortunately, there is not clear agreement on what counts as a hallucination. This is why we
consider an idealized model in which there are clear-cut facts, where statements that violate these
facts would generally be categorized as hallucinations by most definitions.

Open- vs. closed-domain hallucinations. Interestingly, many studies focus on hallucination
with respect to a specific source document that is given to an LM, such as in translation (Xu et al.,
2023) or summarization (Maynez et al., 2020). There, LMs are also found to fabricate facts not
present in the source document even when instructed to use only information present in the source.
This is referred to as closed-domain hallucination in contrast to our open-domain setting, where
the LM generates hallucinations which are not factually grounded in its training data. There is
no clear statistical argument for why closed-domain hallucinations must occur, since if one can
verify such hallucinations from the source text and generation one can avoid them by filtering out
generations with such mistakes. Consistent with this, (OpenAI, 2023) reports a greater reduction in
closed-domain hallucinations over open-domain ones.

Honesty vs. factuality. Evans et al. (2021) points out that there is a di”erence between factuality

and truthfulness (i.e., honesty). An LM which states something that disagrees with its training

6

before alignment, LM is calibrated alignment sacrifices calibration
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“Hallucination is inevitable”

Xu, Ziwei, Sanjay Jain, and Mohan Kankanhalli. "Hallucination is inevitable: An innate limitation of large language models." arXiv preprint arXiv:2401.11817 (2024).

(disclaimer: simplified claims)

Assumption: hallucination is defined as inconsistencies between a 
computable LLM and a ground truth function in (any) world.
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“Hallucination is inevitable”

Xu, Ziwei, Sanjay Jain, and Mohan Kankanhalli. "Hallucination is inevitable: An innate limitation of large language models." arXiv preprint arXiv:2401.11817 (2024).

(disclaimer: simplified claims)

Assumption: hallucination is defined as inconsistencies between a 
computable LLM and a ground truth function in (any) world.

Theorem: Even if LLMs learn computable functions, they will 
inevitably hallucinate due to infinitely possible worlds.
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Strong Watermarking Is Impossible for LMs

Zhang, Hanlin, et al. "Watermarks in the sand: impossibility of strong watermarking for language models." Forty-first International Conference on Machine Learning. 2024.

(disclaimer: simplified claims)

Definitions 
Watermark: a set of outputs  detectable by  
Strong watermarking: for any prompt , and a (watermarked) output 
, there is no efficient attacker to obtain  without watermark that the 

.

{y |D(y) = 1} D
x

y y′￼

LM(x, y′￼) ≥ LM(x, y)
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Strong Watermarking Is Impossible for LMs

Zhang, Hanlin, et al. "Watermarks in the sand: impossibility of strong watermarking for language models." Forty-first International Conference on Machine Learning. 2024.

(disclaimer: simplified claims)

Definitions 
Watermark: a set of outputs  detectable by  
Strong watermarking: for any prompt , and a (watermarked) output 
, there is no efficient attacker to obtain  without watermark that the 

.

{y |D(y) = 1} D
x

y y′￼

LM(x, y′￼) ≥ LM(x, y)

Theorem: with a perturbation oracle, a strong watermarking is 
impossible. i.e., there always exists an efficient attacker f : y → y′￼
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Strong Watermarking Is Impossible for LMs

Zhang, Hanlin, et al. "Watermarks in the sand: impossibility of strong watermarking for language models." Forty-first International Conference on Machine Learning. 2024.

Watermarks in the Sand: Impossibility of Strong Watermarking for Language Models

Figure 2: Detection and quality w.r.t. the number of perturbation steps using Llama2-7B with the KGW scheme (Kirchen-
bauer et al., 2023a). Left: z-score (standard deviation deviation from the null hypothesis of non-watermarked content).
Right: GPT-4 Judge score. Results are aggregated across 12 examples and the order of comparands.

Algorithm 1 Pseudocode for our attack
Input: prompt x, watermarked response y, quality oracle

Q, perturbation oracle P, random walk length T .
Output: response y→ without watermark.
y→ → y ; // initialize with the

watermarked response

for t → 1 to T do
yt → P(x, y→) ; // apply perturbation

if Q(x, yt) ↑ Q(x, y) then
y→ → yt ; // update if quality does

not decrease

end
end
return y→ without watermark ; // return the

de-watermarked response

1.2. Experimental Results and Attack Implementation
As proof of concept, we implement instantiations of quality
and perturbation oracles for the text modality, resulting in
a practical attack against language model watermarking
schemes. The attack is successful in removing watermarks
from the three watermark schemes on which we tested it
(Kirchenbauer et al., 2023a; Kuditipudi et al., 2023; Zhao
et al., 2023a), see Table 1 and Figure 2.
Specifically, with enough quality-preserving perturbations,
we can degrade watermark average detection performance
on a C4 (Raffel et al., 2020) news completion task to a
z-score below 1.645 and a p-value greater than 0.05, a stan-
dard threshold that entails no more than 5% false positive
rates. In addition, though we use reward models and GPT-
3.5 as our quality oracles, to ensure that the attack is not
overfitting to these imperfect proxies, we also measure the
quality of the perturbed output using GPT-4. (We stress
that GPT-4 is only used to measure the quality of the attack,
and not in the attack itself.) We see that while the detection

probability steadily reduces, the quality score is generally
stable (Figure 2). While the attack might not be the most
efficient approach for these particular schemes, it has the
advantage of being generic and not varying based on the im-
plementation details of each scheme. See Section 5 for more
details on the implementation and experimental results.

2. Related Work
Limitations of generative model watermarks. There
have also been various recent works that attack watermark-
ing schemes. In the vision domain, there are attacks (Zhao
et al., 2023b; Lukas et al., 2023; Saberi et al., 2023) that
can erase watermarks for various watermarking schemes;
relevant attacks typically involve adding noise to either the
images themselves or latent representations, and/or perform-
ing some optimization procedure to remove the watermark.
Some of these works prove that their attacks will succeed
under strict assumptions about watermarks. For instance,
the impossibility result of Zhao et al. (2023b) is focused on
classical schemes that apply a bounded-perturbation water-
mark post-hoc to individual images. Meanwhile, Saberi et al.
(2023) propose a general attack— diffusion purification—
for image watermark schemes with a low “perturbation
budget”, which is the stringent requirement that even for a
single key, the distribution of watermarked outputs is close
to the original distribution of outputs. They also demon-
strate a “model substitution” attack against more general
image watermarking schemes. This attack finds adversarial
perturbations with respect to a proxy watermark detector.
However, obtaining the proxy detector requires either white-
box access to the detection algorithm or a large number of
watermarked and non-watermarked samples. Sadasivan et al.
(2023) (and further results in Saberi et al. (2023)) prove lim-
itations on post-hoc detectors (Zellers et al., 2019; Mitchell
et al., 2023; Tian & Cui, 2023; Wang et al., 2023; Verma
et al., 2023; Tian & Cui, 2023; Chakraborty et al., 2023;
Gehrmann et al., 2019; Wu et al., 2023a) when the distribu-
tions of human and AI-generated text are close. Post-hoc
detectors attempt to detect whether data is generated by a
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Figure 2: Detection and quality w.r.t. the number of perturbation steps using Llama2-7B with the KGW scheme (Kirchen-
bauer et al., 2023a). Left: z-score (standard deviation deviation from the null hypothesis of non-watermarked content).
Right: GPT-4 Judge score. Results are aggregated across 12 examples and the order of comparands.
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de-watermarked response

1.2. Experimental Results and Attack Implementation
As proof of concept, we implement instantiations of quality
and perturbation oracles for the text modality, resulting in
a practical attack against language model watermarking
schemes. The attack is successful in removing watermarks
from the three watermark schemes on which we tested it
(Kirchenbauer et al., 2023a; Kuditipudi et al., 2023; Zhao
et al., 2023a), see Table 1 and Figure 2.
Specifically, with enough quality-preserving perturbations,
we can degrade watermark average detection performance
on a C4 (Raffel et al., 2020) news completion task to a
z-score below 1.645 and a p-value greater than 0.05, a stan-
dard threshold that entails no more than 5% false positive
rates. In addition, though we use reward models and GPT-
3.5 as our quality oracles, to ensure that the attack is not
overfitting to these imperfect proxies, we also measure the
quality of the perturbed output using GPT-4. (We stress
that GPT-4 is only used to measure the quality of the attack,
and not in the attack itself.) We see that while the detection

probability steadily reduces, the quality score is generally
stable (Figure 2). While the attack might not be the most
efficient approach for these particular schemes, it has the
advantage of being generic and not varying based on the im-
plementation details of each scheme. See Section 5 for more
details on the implementation and experimental results.

2. Related Work
Limitations of generative model watermarks. There
have also been various recent works that attack watermark-
ing schemes. In the vision domain, there are attacks (Zhao
et al., 2023b; Lukas et al., 2023; Saberi et al., 2023) that
can erase watermarks for various watermarking schemes;
relevant attacks typically involve adding noise to either the
images themselves or latent representations, and/or perform-
ing some optimization procedure to remove the watermark.
Some of these works prove that their attacks will succeed
under strict assumptions about watermarks. For instance,
the impossibility result of Zhao et al. (2023b) is focused on
classical schemes that apply a bounded-perturbation water-
mark post-hoc to individual images. Meanwhile, Saberi et al.
(2023) propose a general attack— diffusion purification—
for image watermark schemes with a low “perturbation
budget”, which is the stringent requirement that even for a
single key, the distribution of watermarked outputs is close
to the original distribution of outputs. They also demon-
strate a “model substitution” attack against more general
image watermarking schemes. This attack finds adversarial
perturbations with respect to a proxy watermark detector.
However, obtaining the proxy detector requires either white-
box access to the detection algorithm or a large number of
watermarked and non-watermarked samples. Sadasivan et al.
(2023) (and further results in Saberi et al. (2023)) prove lim-
itations on post-hoc detectors (Zellers et al., 2019; Mitchell
et al., 2023; Tian & Cui, 2023; Wang et al., 2023; Verma
et al., 2023; Tian & Cui, 2023; Chakraborty et al., 2023;
Gehrmann et al., 2019; Wu et al., 2023a) when the distribu-
tions of human and AI-generated text are close. Post-hoc
detectors attempt to detect whether data is generated by a

4

Watermarks in the Sand: Impossibility of Strong Watermarking for Language Models

Figure 2: Detection and quality w.r.t. the number of perturbation steps using Llama2-7B with the KGW scheme (Kirchen-
bauer et al., 2023a). Left: z-score (standard deviation deviation from the null hypothesis of non-watermarked content).
Right: GPT-4 Judge score. Results are aggregated across 12 examples and the order of comparands.

Algorithm 1 Pseudocode for our attack
Input: prompt x, watermarked response y, quality oracle

Q, perturbation oracle P, random walk length T .
Output: response y→ without watermark.
y→ → y ; // initialize with the

watermarked response

for t → 1 to T do
yt → P(x, y→) ; // apply perturbation

if Q(x, yt) ↑ Q(x, y) then
y→ → yt ; // update if quality does

not decrease

end
end
return y→ without watermark ; // return the

de-watermarked response

1.2. Experimental Results and Attack Implementation
As proof of concept, we implement instantiations of quality
and perturbation oracles for the text modality, resulting in
a practical attack against language model watermarking
schemes. The attack is successful in removing watermarks
from the three watermark schemes on which we tested it
(Kirchenbauer et al., 2023a; Kuditipudi et al., 2023; Zhao
et al., 2023a), see Table 1 and Figure 2.
Specifically, with enough quality-preserving perturbations,
we can degrade watermark average detection performance
on a C4 (Raffel et al., 2020) news completion task to a
z-score below 1.645 and a p-value greater than 0.05, a stan-
dard threshold that entails no more than 5% false positive
rates. In addition, though we use reward models and GPT-
3.5 as our quality oracles, to ensure that the attack is not
overfitting to these imperfect proxies, we also measure the
quality of the perturbed output using GPT-4. (We stress
that GPT-4 is only used to measure the quality of the attack,
and not in the attack itself.) We see that while the detection

probability steadily reduces, the quality score is generally
stable (Figure 2). While the attack might not be the most
efficient approach for these particular schemes, it has the
advantage of being generic and not varying based on the im-
plementation details of each scheme. See Section 5 for more
details on the implementation and experimental results.

2. Related Work
Limitations of generative model watermarks. There
have also been various recent works that attack watermark-
ing schemes. In the vision domain, there are attacks (Zhao
et al., 2023b; Lukas et al., 2023; Saberi et al., 2023) that
can erase watermarks for various watermarking schemes;
relevant attacks typically involve adding noise to either the
images themselves or latent representations, and/or perform-
ing some optimization procedure to remove the watermark.
Some of these works prove that their attacks will succeed
under strict assumptions about watermarks. For instance,
the impossibility result of Zhao et al. (2023b) is focused on
classical schemes that apply a bounded-perturbation water-
mark post-hoc to individual images. Meanwhile, Saberi et al.
(2023) propose a general attack— diffusion purification—
for image watermark schemes with a low “perturbation
budget”, which is the stringent requirement that even for a
single key, the distribution of watermarked outputs is close
to the original distribution of outputs. They also demon-
strate a “model substitution” attack against more general
image watermarking schemes. This attack finds adversarial
perturbations with respect to a proxy watermark detector.
However, obtaining the proxy detector requires either white-
box access to the detection algorithm or a large number of
watermarked and non-watermarked samples. Sadasivan et al.
(2023) (and further results in Saberi et al. (2023)) prove lim-
itations on post-hoc detectors (Zellers et al., 2019; Mitchell
et al., 2023; Tian & Cui, 2023; Wang et al., 2023; Verma
et al., 2023; Tian & Cui, 2023; Chakraborty et al., 2023;
Gehrmann et al., 2019; Wu et al., 2023a) when the distribu-
tions of human and AI-generated text are close. Post-hoc
detectors attempt to detect whether data is generated by a

4

detection score decreases

GPT-4 score (quality) remains stable

Part 3: Physics - Topic 2: Impossibilities



Strong Watermarking Is Impossible for LMs

Zhang, Hanlin, et al. "Watermarks in the sand: impossibility of strong watermarking for language models." Forty-first International Conference on Machine Learning. 2024.

Watermarks in the Sand: Impossibility of Strong Watermarking for Language Models

marking schemes for generative models is to alter the infer-
ence procedure to plant identifiable statistical signals (water-
marks) into the model outputs (Kirchenbauer et al., 2023a;
Kuditipudi et al., 2023; Zhao et al., 2023a; Kirchenbauer
et al., 2023b; Christ et al., 2023; Fernandez et al., 2023;
Aaronson, 2022). Because these schemes can intervene in
the generation process, they are potentially more powerful
than classical digital watermarking schemes (Boland et al.,
1995; O’Ruanaidh & Pun, 1997), which add imperceptible
watermarks to individual given pieces of content.

A watermarking scheme consists of a generation algorithm
that is a modified version of the model in which the signal
is planted and a detection algorithm that can detect whether
a piece of output came from the watermarked model. Wa-
termarking schemes can be partitioned onto at least two
different axes: Public versus private: A public watermark-
ing scheme is one where the detection algorithm is acces-
sible to all parties. A private (or secret-key) watermarking
scheme is one in which running the detection algorithm
requires some private information. Strong versus weak:
A strong watermarking scheme is one where a (computa-
tionally bounded) attacker cannot modify the output (e.g.,
rephrase the text, apply a filter to the image, etc.) to remove
the watermark without causing significant quality degrada-
tion. A weak watermarking scheme only resists removal
by a well-specified set of transformations. At a minimum,
the detection algorithm of a weak scheme must flag out-
puts that are simply “copied and pasted”. More generally,
it can ensure the detection of modified outputs as long as
the modification is close to the original according to some
metric such as edit distance for text, ω1 norm for images.
Weak watermarks can still be useful for applications like pre-
venting AI-generated content from being used for training
(Shumailov et al., 2023), making it more expensive or incon-
venient to generate misinformation or cheat on assignments,
and tracking the provenance of the precise text/image/etc,
which the watermark was applied to. But they will not foil
a determined attacker.
In this paper, we focus on strong watermarking and hence
drop the “strong” modifier from this point on. (See Sec-
tion 3 for the formal definition.) Our main result is negative:
Under mild assumptions (which we specify below), strong
watermarking of generative models is impossible. This holds
even in the more challenging (for the attacker) secret-key
watermarking setting, where the adversary cannot access
the watermarking algorithm. Our assumptions already hold
today in several settings, and we argue that they will be-
come only more likely as models grow in both capabilities
and modalities. The impossibility result is constructive: we
design a generic attack methodology that can remove any
watermark, given the assumptions. Our attack algorithm
does not need access to the non-watermarked model or to
any model with similar capabilities; the attack can be in-

stantiated with only black-box access to the watermarked
model, and white-box use of much weaker open-source
models. We instantiate an implementation of the attack
and use it to successfully remove LM watermarks planted
by the schemes of Kirchenbauer et al. (2023a), Kuditipudi
et al. (2023), and Zhao et al. (2023a), as well as VLM wa-
termarks implemented by Mountain (2021) and Fernandez
et al. (2023), while maintaining text or image quality as
judged by GPT4 (OpenAI, 2023).

High-quality Outputs

Low-quality Outputs

Watermarked Outputs

1 ... ...
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24

24

14

1

Figure 1: An outline of our quality-preserving random walk
attack schema (The differences with original watermarked text are
highlighted.). We consider the set of all possible outputs and within
it the set of all high-quality outputs (with respect to the original
prompt). For any quality-preserving watermarking scheme with
a low false-positive rate, the set of watermarked outputs (green)
will be a small subset of the high-quality output (orange). We then
take a random walk on the set of high-quality outputs to arrive at a
non-watermarked output (red) by generating candidate neighbors
through the perturbation oracle and using the quality oracle to
reject all low-quality candidates.

Our assumptions in a nutshell. Consider a generative
model M that takes as input a prompt x → X to generate
an output y → Y according to some probability distribution.
Suppose that y was watermarked in some way, and we
consider a watermark-removing adversary A. Our starting
point is the following simple but powerful observation: A’s
goal is not to find a non-watermarked y→ that is semantically
equivalent to y; rather, it is sufficient for A to find a non-
watermarked y→ that has equivalent quality to y as a response
to the prompt. For example, if x was a prompt to write an
essay on some topic, and y is a watermarked essay, then
A does not need to find a rephrasing of y: it is enough to
find another essay that would get the same grade. Given
the above, we believe that the watermarking task should be
phrased with respect to a prompt-dependent quality function
Q : X ↑ Y ↓ [0, 1] that on input a prompt x and response
y returns a grade that captures the quality of y as a response
to the prompt x. Our assumptions are the following (see
Section 4.1 for formal statements):
Quality oracle: the attacker has access to a “quality oracle”
that enables it to efficiently compute Q on input pairs (x, y)
of its choice. The quality oracle only needs to be able
to discern quality up to the quality level of the outputs
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(a) Invisible Watermark (Mountain, 2021) (b) Stable Signature (Fernandez et al., 2023)
Figure 5: Qualitative examples of the watermarked images after (left) and before (right) our attack for two watermarking
schemes. Images are generated by prompting VLMs with the prompt “A long and winding beach, tropical, bright, simple,
by Studio Ghibli and Greg Rutkowski, artstation\n”. Detection and quality evaluation results: Invisible Watermark (p-value
3.5e-15 → 0.2354, CLIPScore 34.82 → 33.60, GPT-4 Judge 0), Stable Signature (p-value 1.3e-5 → 0.468, CLIPSCore
32.27 → 31.58 , GPT-4 Judge 0).

sults are averaged over these 12 examples, and the GPT-4
judge results are averaged over the two output orderings
as well. In Figure 2, as the number of traversal steps in-
creases, the z-score steadily decreases while the average
GPT-4 judgment score fluctuates around its initial value of
0. In Appendix K.3, we showcase how the text, detection
statistics, and GPT-4 judge score change over the course of
the random walk attack for a single example.

5.3. Experimental Results on Vision-Language Models
As a proof of concept of the generality of our attack, we
show that a version of the attack can remove watermarks that
have been used for image diffusion models. Specifically, we
attack Invisible Watermark (Mountain, 2021) applied to the
diffusion model stable-diffusion-xl-base-1.0 (Podell et al.,
2023) and the Stable Signature (Fernandez et al., 2023) to
sdxl-turbo (Sauer et al., 2023).

Table 2: Average results on two image watermark schemes
before and after attack, as applied to the stable-diffusion-xl.
We adopt the same evaluation protocol as on LMs (Table 1).

Framework p-value CLIP score GPT-4 Judge

Stable Signature (Fernandez et al., 2023) 5.9404e-6 → 0.0589 33.91 → 33.40 -0.0875
Invisible Watermark (Kirchenbauer et al., 2023a) 1.793e-5 → 0.206 35.64 → 35.51 - 0.138

We first generate 200 images from randomly chosen prompts
that are verified to be effective in generating high-quality
images and then filter those examples with p-values greater
than 0.001. For the remaining 141 valid examples (for Sta-
ble Signature, all are valid), we implement our perturbation
oracle using stable-diffusion-2-base (Rombach et al., 2022),
which inpaints the image masked by a random square mask
of size 0.02 times the image size. Note that this is a weaker
model than the watermarked models, but it is not much
weaker, so we see these results as preliminary. Our quality
oracle is implemented as a reward model trained on Human
Preference Score v2 (Wu et al., 2023b). We perturb the im-

age for 100 valid random walk steps. Finally, the attacked
images are evaluated by calculating the CLIPScore (Hessel
et al., 2021) and querying the multimodal API of GPT-4
(OpenAI, 2023), gpt-4-turbo, to report the final quality com-
parison scores using the prompt “[Prompt], Response A:
[Image A], Response B: [Image B], Compare which of the
two above figures is a better response of higher-quality to
the given prompt. Explain your reasoning step by step.”
We show in the Table 2 that our attack can successfully re-
move the watermarks with only slight degradation in image
quality using the same evaluation protocol as on LMs.

5.4. Qualitative Examples

We display two concrete non-cherrypicked before-and-after
examples of the effects of our attack on model outputs to
know how quality is affected by the process (Figure 4). We
use an SAT essay prompt: “In any field of inquiry, the be-
ginner is more likely than the expert to make important
contributions. Write a response in which you discuss the
extent to which you agree or disagree with the statement
and explain your reasoning for the position you take. In
developing and supporting your position, you should con-
sider ways in which the statement might or might not hold
true and explain how these considerations shape your posi-
tion.”. The comparison shows that the text after our attack
can still be coherent, fluent, and on-topic. Such high-quality
non-watermarked examples are abundant in our results. A
detailed presentation of the text across various intermediate
stages throughout the attack is in Appendix J.3 with detec-
tion results and quality evaluations. Moreover, Figure 5
showcases two set of images before and after our attack.
Some image details such as the background, and shapes
of objects get perturbed but the overall image can still fit
the prompt provided. We again see the p-values dramat-
ically increase after our attack though with slight quality
degradation.
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• More natural settings and more realistic assumptions


• Obtaining tighter bounds for LM limitations


• Involving and unifying the effect of model architectures, data distribution and 
linguistic structure?

Room for Future Efforts



A Retrospect of Science of LMs

Performance: 
(Task-level scores)

Ethology 
(Instance level, 
behaviors)

Physiology of LMs 
(components-level)

Physics of LMs 
(laws at population level)

?

Model-Oriented                                                                                                         Behavior-Oriented



Model-Data-Task Triangular: A Roadmap
Model

Data Task
performance 
improvement

LM architecture 
design

data collection

3.1 scaling laws

LM theory

“Ethology”

“Physiology”
2.1 - attention

2.2 - embedding

The 1.5hr tutorial is 
far from being 
comprehensive!

3.2 impossibility 
results

“Physics”
1.1 - syntax (language structure)


1.2 - knowledge (LM & world)


1.3 - reasoning (LM capabilities)



Discussions and Q&A
• Will we have a unified scientific framework for analyzing LMs? 

or, multiple levels of frameworks instead?

particles
F = ma

fluid (mass of particles )
∂u
∂t

+ (u ⋅ ∇)u = −
1
ρ

∇ρ + ν∇2u

supersonic flow
shock waves, etc…

• Will we be able to characterize every phenomenon? 
or, will there always be a next unsolved problem, 
just as in curse of dimensionality

image credit: https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/


